Cytotoxic and Apoptotic-inducing Effect of Fraction Containing Brazilein from Caesalpinia sappan L. and Cisplatin on T47D Cell Lines

Prisnu Tirtanirmala, Annisa Novarina, Rohmad Yudi Utomo, Raisatun Nisa Sugiyanto, Riris Istighfari Jenie, Edy Meiyanto

Abstract


Anticancer activity of secang’s heartwood (Caesalpinia sappan L.) is based on its main compound: brazilin and brazilein. Brazilin, brazilein, and other compounds such as caesalpiniaphenol can affect proteins that have a role in apoptosis. In this study, we observed cytotoxic activity of fraction containing brazilein (FCB) alone or in combination with chemotherapeutic agent, cisplatin and the ability of the combination to induce apoptosis in T47D breast cancer cell lines. Cytotoxicity assay was determined using MTT assay, whereas the detection apoptosis induction was conducted using flow cytometry using Annexin-V and propidium iodide. FCB and cisplatin showed cytotoxic effect on T47D cells with IC50 value of 68 µg/mL and 16 µM, respectively. Combination of FCB and cisplatin result synergistic combination at the concentration ratio of 1/2 IC50 with CI value of 0.66. Its combination also able to induce apoptosis on T47D cell population 13% larger than the single treatment. Based on this study, we conclude that FCB is able to enhance the cytotoxic effects of cisplatin by inducing apoptosis.

Keywords:  Caesalpinia sappan L., cisplatin, apoptosis, breast cancer


Full Text:

PDF

References


Bouker, K.B., Skaar, T.D., Riggins, R.B., Harburger, D.S., Fernandez, D.R., Zwart, A.,et al., 2005, Interferon Regulatory Factor-1 (IRF-1) Exhibits Tumor Supressor Activities in Breast Cancer Associated with Caspase Avtivation and Induction of Apoptosis, Carcinogenesis, 26(9), 1527-1535. CrossRef

Chipuk, J.E., Maurer, U., Green, D.R. and Schuler, M., 2003, Pharmacologic Activation Of P53 Elicits Bax-Dependent Apoptosis In The Absence Of Transcription, Cancer Cell, 4(5), 371-381. Link

Dhar, S., Kolishetti, N., Lippard, S.J. and Farokhzad, O.C., 2011, Targeted Delivery of a Cisplatin Prodrug for Safer and More Effective Prostate Cancer Therapy In Vivo, Proc. Natl. Acad. Sci. USA, 108(5), 1850-1855. CrossRef

Hengartner, M.O., 2000, The Biochemistry of Apoptosis, Nature, 407(6805): 770–776. CrossRef

Hsieh, C.Y., Tsai, P.C., Chu, C.L., Chang, F.R., Chang, L.S., Wu, Y.C., et al., 2013, Brazilein Suppresses Migration and Invasion of MDA-MB-231 Breast Cancer Cells, Chem. Biol. Interact., 204(2),105-115. CrossRef

Ismael, G.F., Rosa, D.D., Mano, M.S. and Awada, A., 2008, Novel Cytotoxic Drugs: Old Challenges, New Solutions, Cancer Treat. Rev., 34(1), 81-91. CrossRef

Kim, B., Kim, S.H., Jeong, S.J., Sohn, E.J., Jung, J.H., Lee, M.H., et al., 2012, Brazilin Induces Apoptosis and G2/M Arrest Via Inactivation of Histone Deacetylase in Multiple Myeloma U266 Cells, J. Agric. Food Chem.,60(39), 9882-9889. CrossRef

Lee, D.Y., Lee, M.K., Kim, G.S., Noh, H.J. and Lee, M.H., 2013, Brazilin Inhibits Growth and Induces Apoptosis in Human Glioblastoma Cells, Molecules, 18, 2449-2457. CrossRef

Liang, C.H., Chan, L.P., Chou, T.H., Chiang, F.Y., Yen, C.M., Chen, P.J., et al., 2013, Brazilein from Caesalpinia sappan L. Antioxidant Inhibits Adipocyte Differentiation and Induces Apoptosis Through Caspase-3 Activity and Anthelmintic Activities Against Hymenolepis Nana and Anisakis Simplex, Evid. Based Complement. Alternat. Med., 2013(2013), 864892. CrossRef

Marsden, V.S., O'Connor, Liam., O'Reilly, L.A., Silke, J., Metcalf, D., Ekert, P.G., et al., 2002, Apoptosis Initiated By Bcl-2-Regulated Caspase Activation Independently Of The Cytochrome C/Apaf-1/Caspase-9 Apoptosome, Nature, 419(6907), 634-637. CrossRef

Milosavlievic, N., Duranton, C., Djerbi, N., Puech, P., Gounon,P., Lagadic-Gossmann, D., et al., 2010, Nongenomic Effects Of Cisplatin: Acute Inhibition Of Mechanosensitive Transporters And Channels Without Actin Remodeling, Cancer Res.,70(19), 7514-7522. CrossRef

Mokhtari, M.J., Azim, A., Mehrdad, H., Gholamreza, J., Reza, M., Mohammad, R.M., et al., 2012, Cisplatin Induces Down Regulation of BCL2 in T47D Breast Cancer Cell Line, Advanced Studies in Biology, 4(1), 19 – 25. Link

Nurulita, N.A. and Muflih, Y.A., 2006, Efek Sitotoksik Ekstrak Metanol Kayu Secang (Caesalpinia sappan L.) pada Sel Kanker Payudara T47D melalui Induksi Apoptosis, PHARMACY, 4(1), 1-9.

Omoyeni, O.A., Meyer, M., Iwuoha, E., Green, I. and Hussein, A.A., 2014, An Unusual 2,3-Secotaraxerene and Other Cytotoxic Triterpenoids from Pleiocarpa pycnantha (Apocynaceae) Leaves Collected from Nigeria, Molecules, 19(3), 3389-3400. CrossRef

Schafer, J.M., Lee, E.S., O’Regan, R.M., Yao, K., and Jordan, V.C., 2000, Rapid Development of Tamoxifen-stimulated Mutant p53 Breast Tumors (T47D) in Athymic Mice, Clin. Cancer Res., 6(11), 4373-4380. Link

Sharma, G., Tyagi, A.K., Singh, R.P., Chan, D.C.F. and Agarwal, R., 2004, Synergistic Anti-Cancer Effect of Grape Seed Extract and Conventional Cytotoxic Agent Doxorubicin Against Human Breast Carcinoma Cells, Breast Cancer Res. Treat., 85(1), 1-12. CrossRef

Shimokawa, T., Kinjo, J., Yamahara, J., Yamahara, M. and Nohara, T., 1985, Two Novel Aromatic Compounds from Caesalpinia sappan, Chem. Pharm. Bull., 33(8), 3545-3547. CrossRef

Siervo-Sassi, R.R., Marrangoni, A.M., Feng, X., Naoumova, N., Winans, M., Edwards, R.P., Lokshin, A., 2003, Physiological and Molecular effects of Apo2L/TRAIL and Cisplatin in Ovarian Carcinoma Cell Lines, Cancer Lett., 190, 61-72. Link

Tanida, S., Tsutomu, M., Keiji, O., Hironobu, T., Takeshi, K., Hiromi, K., et al.,2012, Mechanisms of Cisplatin-Induced Apoptosis and of Cisplatin Sensitivity: Potential of BIN1 to Act as a Potent Predictor of Cisplatin Sensitivity in Gastric Cancer Treatment, Int. J. Surg. Oncol., 2012(2012), 1-9. CrossRef

Taoa Li-yang, Li Jian-ying, and Zhang Jian-ye, 2011, Brazilein Induced Cells Apoptosis in Human Breast Cancer MCF-7 Cells and Its Action Mechanism, Journal of Sun Yat-Sen University 32 (4): 449-453.

Thomadaki, H. and Scorilas, A., 2007, Breast Cancer Cells Response to the Antineoplastic Agents Cisplatin, Carboplatin, and Doxorubicin at the mRNA Expression Levels of Distinct Apoptosis-related Genes, Including the New Member, BCL2L12, Ann. N. Y. Acad. Sci., 1095, 35-44. CrossRef

Tsimberidou A.M., F. Braiteh, D.J. Stewart, and R. Kurzrock, 2009, Ultimate Fate of Oncology Drugs Approved by The US Food and Drug Administration Without a Randomized Trial, J. Clin. Oncol., 27(36), 6243-6250. CrossRef

Washiyama, M., Sasaki, Y., Hosokawa, T. and Nagumo, S., 2009, Anti-inflammatory Constituents of Sappan Lignum, Biol. Pharm. Bull., 32(5), 941-944. Link

Yan X., W. Wang, D. Xing, Y. Zhao, and L. Du, 2005, Development and Optimization of a Method for the Analysis of Brazilein by HPLC with Electrochemical Detection, J. Chromatogr. A., 1077(1), 44–48. Link

Yen, C.T., Nakagawa-Goto, K., Hwang, T.L., Wu, P.C., Morris-Natschke, S.L., Lai, W.C., et al., 2010, Antitumor Agents. 271. Total Synthesis and Evaluation of Brazilein and Analogs as Anti-inflammatory and Cytotoxic Agents, Bioorg. Med. Chem. Lett., 20(3), 1037–1039. CrossRef

Zhong, X., Wu, B., Pan, Y.J. and Zheng, S., 2009, Brazilein Inhibits Survivin Protein and mRNA Expression and Induces Apoptosis in Hepatocellular Carcinoma HepG2 Cells, Neoplasma, 56(5), 387-92. Link




DOI: http://dx.doi.org/10.14499/indonesianjcanchemoprev6iss3pp89-96

Copyright (c) 2017 Indonesian Journal of Cancer Chemoprevention

Indexed by:

               

               

      

 

Indonesian Society for Cancer Chemoprevention