Analysis of SARS-CoV-2 spike-Induced Syncytia with Lifeact-GFP as Biosensor Using High-Content Screening Instrument for Automated Syncytia Counting
Abstract
SARS-CoV-2 is believed to cause cytopathic effects in forming multinucleated cells, known as syncytia. Syncytia due to SARS-CoV-2 infection found in lung tissue samples of COVID-19 patients represents a case of COVID-19 with a poor prognosis. Therefore, it is very important to study the mechanism of syncytia formation and to test candidate materials that can inhibit the occurrence of syncytia and potentially be applied in the treatment or prevention of COVID-19. Since syncytia counting and analysis are time-consuming, we utilized a high-content screening (HCS) instrument in this study to automate syncytia analysis. We used 293T cells transfected with plasmids to express the SARS-CoV-2 spike, human angiotensin-converting enzyme-2 (hACE-2), and a plasmid encoding lifeact-GFP as an F-actin biosensor to facilitate syncytia analysis using the HCS instrument. In this study, syncytia analysis was carried out using HCS software. The HCS application categorizes cells as multi-nuclei by counting the number of cell nuclei stained with DAPI in cells that emitted green fluorescence due to lifeact-GFP expression. Syncytia analysis is time-consuming because of the calculation of the number of syncytia formed in a confluent cell monolayer culture. Hopefully, utilizing the HCS platform can accelerate the test of syncytia inhibition after various treatments using test compounds.
Keywords: 293T cells, high-content analysis, SARS-CoV-2, spike, syncytia.
Full Text:
PDFReferences
Asarnow, D., Wang, B., Lee, W., Hu, Y., Huang, C., Faust, B., et al., 2021, Structural insight into SARS-CoV-2 neutralizing antibodies and modulation of syncytia, Cell, 184(12), 3192- 3204.e16. CrossRef
Bar-Shavit, Z., 2007, The osteoclast: A multinucleated, hematopoietic-origin, bone- resorbing osteoimmune cell, Journal of Cellular Biochemistry, 102(5), 1130–1139. CrossRef
Battles, M.B., and McLellan, J.S., 2019, Respiratory syncytial virus entry and how to block it, Nat Rev Microbiol., 17(4), 233–245. CrossRef
Belin, B.J., Goins, L.M., and Mullins, R.D., 2014, Comparative analysis of tools for live cell imaging of actin network architecture, Bioarchitecture, 4(6), 189-202. CrossRef
Buchrieser, J., Dufloo, J., Hubert, M., Monel, B., Planas, D., Rajah, M.M., et al., 2020, Syncytia formation by SARS-CoV-2-infected cells, The EMBO J., 39(23), e106267. CrossRef
Bussani, R., Schneider, E., Zentilin, L., Collesi, C., Ali, H., Braga, L., et al., 2020, Persistence of viral RNA, pneumocyte syncytia and thrombosis are hallmarks of advanced COVID-19 pathology, EBioMedicine, 61. CrossRef
Cattin-Ortolá, J., Welch, L.G., Maslen, S.L., Papa, G., James, L.C., and Munro, S., 2021, Sequences in the cytoplasmic tail of SARS-CoV-2 Spike facilitate expression at the cell surface and syncytia formation, Nat Commun., 12(1), 1–11. CrossRef
Cesar-Silva, D., Pereira-Dutra, F.S., Moraes Giannini, A.L., Jacques, G., and de Almeida, C., 2022, The Endolysosomal System: The Acid Test for SARS-CoV-2, Int J Mol Sci., 23(9), 4576. CrossRef
Cifuentes-Muñoz, N., Dutch, R.E., and Cattaneo, R., 2018, Direct cell-to-cell transmission of respiratory viruses: The fast lanes, PLoS Pathog, 14(6). CrossRef
DuBridge, R.B., Tang, P., Hsia, H.C., Leong, P.-M., Miller, J.H., and Calos, M.P., 1987, Analysis of Mutation in Human Cells by Using an Epstein-Barr Virus Shuttle System, Mol Cell Biol., 7(1) 379–387. CrossRef
Edie, S., Zaghloul, N.A., Leitch, C.C., Klinedinst, D.K., Lebron, J., Thole, J.F., et al., 2018, Survey of Human Chromosome 21 Gene Expression Effects on Early Development in Danio rerio, G3 (Bethesda), 8(7), 2215-2223. CrossRef
Fraser, B.J., Beldar, S., Seitova, A., Hutchinson, A., Mannar, D., Li, Y., et al., 2022, Structure and activity of human TMPRSS2 protease implicated in SARS-CoV-2 activation, Nat Chem Biol., 18, 963–971. CrossRef
Graham, F.L., Smiley, J., Russell, W.C., and Nairn, R., 1977, Characteristics of a human cell line transformed by DNA from human adenovirus type 5, Journal of General Virology, 36(1), 59–72. CrossRef
Gupta, A., Madhavan, M.V., Sehgal, K., Nair, N., Mahajan, S.,Sehrawat, T.S., et al., 2020, Extrapulmonary manifestations of COVID-19, Nat Med., 26, 1017–1032. CrossRef
Fraser, B.J., Beldar, S., Seitova, A., Hutchinson, A., Mannar, D., Li., Y., et al., 2022, Structure and activity of human TMPRSS2 protease implicated in SARS-CoV-2 activation, Nat Chem Biol., 18, 963–971. CrossRef
Li, W., Han, J.L., and Entcheva, E., 2020, Cardiac Excitation and Contraction: Syncytium cell growth increases Kir2.1 contribution in human iPSC-cardiomyocytes, American Journal of Physiology - Heart and Circulatory Physiology, 319(5), H1112. CrossRef
Lilyestrom, W., Klein, M.G., Zhang, R., Joachimiak, A., and Chen, X.S., 2006, Crystal structure of SV40 large T-antigen bound to p53: interplay between a viral oncoprotein and a cellular tumor suppressor, Genes & Development, 20(17), 2373–2382. CrossRef
Mlcochova, P., Kemp, S.A., Dhar, M.S., Papa, G., Meng, B., Ferreira, I.A.T.M., et al., 2021, SARS-CoV-2 B.1.617.2 Delta variant replication and immune evasion, Nature, 599, 114–119. CrossRef
Padmanabhan, P., Desikan, R., and Dixit, N.M., 2020, Targeting TMPRSS2 and Cathepsin B/L together may be synergistic against SARS-CoV-2 infection, PLOS Computational Biology, 16(12), e1008461. CrossRef
Pajcini, K.V., Pomerantz, J.H., Alkan, O., Doyonnas, R., and Blau, H.M., 2008, Myoblasts and macrophages share molecular components that contribute to cell-cell fusion, J Cell Biol., 180(5), 1005–1019. CrossRef
Peacock, T.P., Brown, J.C., Zhou, J., Thakur, N., Sukhova, K., Newman, J., et al., 2022, The altered entry pathway and antigenic distance of the SARS-CoV-2 Omicron variant map to separate domains of spike protein, bioRxiv. CrossRef
Rio, D.C., Clark, S.G., and Tjian, R., 1985, A Mammalian Host-Vector System That Regulates Expression and Amplification of Transfected Genes by Temperature Induction, Science, 227(4682), 23–28. CrossRef
Septisetyani, E.P., Prasetyaningrum, P.W., Paramitasari, K.A., Suyoko, A., Himawan, A.L.I., Azzahra, S., et al., 2024, Naringin Effect on SARS-CoV-2 Pseudovirus Entry and Spike Mediated Syncytia Formation in hACE2-overex¬pressing Cells, HAYATI J Biosci., 31(2), 336-347. CrossRef
Shalakhmetova, T.M., Umbayev, B.A., Kolumbayeva, S.Z., and Kudryavtsev, B.N., 2009, About mechanisms of formation of multinuclear hepatocytes during toxic action of N-nitrosodimethylamine on rats, Cell and Tissue Biology, 3(1), 61–70. CrossRef
Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., et al., 2020, Structural basis of receptor recognition by SARS-CoV-2, Nature, 581(7807), 221-224. CrossRef
Singh, B.K., Hornick, A.L., Krishnamurthy, S., Locke, A.C., Mendoza, C.A., Mateo, M., et al., 2015, The Nectin-4/Afadin Protein Complex and Intercellular Membrane Pores Contribute to Rapid Spread of Measles Virus in Primary Human Airway Epithelia, J Virol., 89(14). CrossRef
Tan, E., Chin, C.S.H., Lim, Z.F.S., and Ng, S.K., 2021, HEK293 Cell Line as a Platform to Produce Recombinant Proteins and Viral Vectors, Frontiers in Bioengineering and Biotechnology, 9. CrossRef
Wang, H., Yang, Q., Liu, Q., Xu, Z., Shao, M., Li, D., et al., 2023, Structure-based discovery of dual pathway inhibitors for SARS-CoV-2 entry, Nat. Commun., 14, 7574. CrossRef
Willett, B.J., Grove, J., MacLean, O.A., Wilkie, C., Logan, N., De Lorenzo, G., et al., 2022, The hyper-transmissible SARS-CoV-2 Omicron variant exhibits significant antigenic change, vaccine escape and a switch in cell entry mechanism, MedRxiv., 2022.01.03.21268111. CrossRef
Wünschmann, S. and Stapleton, J.T., 2000, Fluorescence-based quantitative methods for detecting human immunodeficiency virus type 1-induced syncytia, J Clin Microbiol., 38(8), 3055–3060. CrossRef
Zeng, C., Evans, J.P., King, T., Zheng, Y., Oltz, E.M., Whelan, S.P.J., et al., 2022, SARS-CoV-2 spreads through cell-to-cell transmission, PNAS, 119(1), e2111400119. CrossRef
Zhao, M.-M., Yang, W.-L., Yang, F.-Y., Zhang, L., Huang W-J., Hou, W., et al., 2021, Cathepsin L plays a key role in SARS-CoV-2 infection in humans and humanized mice and is a promising target for new drug development, Sig Transduct Target Ther., 6, 134. CrossRef
Zhang, Z., Zheng, Y., Niu, Z., Zhang, B., Wang, C., Yao, X., et al., 2021, SARS-CoV-2 spike protein dictates syncytium-mediated lymphocyte elimination, Cell Death Differ., 28(9), 2765–2777. CrossRef
DOI: http://dx.doi.org/10.14499/indonesianjcanchemoprev15iss2pp127-136
Copyright (c) 2024 Indonesian Journal of Cancer Chemoprevention
Indexed by:






Indonesian Society for Cancer Chemoprevention