Chromolaena odorata L. Leaf Extract Elevates Cytotoxicity of Doxorubicin on 4T1 Breast Cancer Cells

Amaliya Permata Putri, Desty Restia Rahmawati, Faaza Aulia Rahman, Edy Meiyanto, Muthi Ikawati

Abstract


Chemotherapeutic agents for breast cancer such as doxorubicin can attack normal cells as the side effects. Chromolaena odorata L. and its chemical content, sinensetin, have potential anticancer  and  antioxidant  properties.  The  objective  of  this  research  is  to  examine  the anticancer properties of C. odorata leaves extract and sinensetin on 4T1 triple negative breast cancer (TNBC) cells combined with doxorubicin. The MTT (3-(4, 5-dimethylthiazolyl-2)-2, 5 diphenyltetrazolium  bromide)  assay  on  4T1  cells  was  used  to  determine  the  IC50 and the Combination  Index  (CI)  of  the  two  agents  in  combination.  Washing  out the  treatment  and determining  the  cells  viability  after  a  few  days  was done  to evaluate  the  persistence  of the  effects  to  cancer  cells.  Chromolaena odorata  extract  (COE)  obtained  was  proven  to contain  sinensetin  which  gave  a positive  signal  on  the  chromatogram.  COE  and  sinensetin were  moderately  cytotoxic  to  4T1  cells  with  IC50  value  of  53  μg/mL  and  58  μM  (21.6 μg/mL), respectively. Both compounds were synergist (CI<0.7) to strong synergist (CI<0.3) when combined with doxorubicin (IC50 90 nM = 0.05 μg/mL). COE and sinensetin exhibited moderate and not cytotoxic against Vero cells with IC50 values of 60 μg/mL and 243 μM (90.43 μg/mL), respectively. Both COE and sinensetin showed selectivity index values of >1 (1.13 and 4.19, respectively).  Moreover,  the  cytotoxic  effects  of  COE  on  4T1  cells  was  persisted  until  48  h after  removing  COE  from  the  medium,  indicating  the  tumor-suppression  potency  of  COE. Our findings strengthen the scientific basis of C. odorata leaves extract to be developed as a co-chemotherapeutics agent for doxorubicin on TNBC.

Keywords: Chromolaena odorata L., breast cancer cells, doxorubicin, co-chemotherapy, kidney cells.


Full Text:

PDF

References


Ahlina, F.N., Nugraheni, N., Salsabila, I.A., Haryanti, S., Da’i, M., and Meiyanto, E., 2020, Revealing the reversal effect of galangal (Alpinia galanga L.) extract against oxidative stress in metastatic breast cancer cells and normal fibroblast cells intended as a co chemotherapeutic and anti ageing agent, Asian Pac. J. Cancer Prev., 21(1), 107-117. CrossRef

Amalina, N.D., Salsabila, I.A., Zulfin, U.M., Jenie, R.I., and Meiyanto, E., 2023, In vitro synergistic effect of hesperidin and doxorubicin downregulates epithelial-mesenchymal transition in highly metastatic breast cancer cells, J Egypt. Natl. Canc. Inst., 35(1), 6. CrossRef

Atindehou, M., Lagnika, L., Guérold, B., Strub, J.M., Zhao, M., Van Dorsselaer, A., et al., 2013, Isolation and identification of two antibacterial agents from Chromolaena odorata L. active

against four diarrheal strains, Adv. Microbiol., 3(1), 115-121. CrossRef

Aziz, N.A., Mohamad, M., Mohsin, H.F., Hazalin, N.A.M.N., and Hamid, K.A., 2020, The pharmacological properties and medicinal potential of Chromolaena odorata: A review, Int. J. Pharm. Nutraceut. Cosmet. Sci., 2, 30-41. Link

Batista R., Silva Ade J. Jr., and de Oliveira A.B., 2009, Plant-derived antimalarial agents: new leads and efficient phytomedicines. Part II. Nonalkaloidal natural products, Molecules, 14(8), 3037-3072. CrossRef

Bientinesi, E., Lulli, M., Becatti, M., Ristori, S., Margheri, F., and Monti, D., 2022, Doxorubicininduced senescence in normal fibroblasts promotes in vitro tumour cell growth and invasiveness: The role of Quercetin in modulating these processes, Mech. Ageing Dev., 206, 111689. CrossRef

Febriansah, R., and Lakshita, H.A., 2021, Co-Chemotherapeutic Effect of n-Hexane Fraction of Binahong (Anredera cordifolia [Tenore] Steen.) on WiDr Colon Cancer Cell Line, Open Access Maced. J Med. Sci., 9(T4), 77-82. CrossRef

Hanifa, M., Wulandari, R., Zulfin, U.M., Nugroho, E.P., Haryanti, S., and Meiyanto, E., 2022, Different Cytotoxic Effects of Vetiver Oil on Three Types of Cancer Cells, Mainly Targeting CNR2 on TNBC, Asian Pac. J. Cancer Prev., 23(1), 241-251. CrossRef

Haryanti, S., Zulfin, U.M., Salsabila, I.A., Wulandari, F., and Meiyanto, E., 2022, The Cytotoxic and Anti-Migratory Properties of Caesalpinia sappan and Ficus septica, in Combination with Doxorubicin on 4T1 TNBC Cells with Nephroprotective Potential, Asian Pac. J. Cancer Prev., 23(2), 743-752. CrossRef

Huang, B., Zhai, M., Qin, A., Wu, J., Jiang, X., and Qiao, Z., 2020, Sinensetin flavone exhibits potent anticancer activity against drugresistant human gallbladder adenocarcinoma cells by targeting PTEN/PI3K/AKT signalling pathway, induces cellular apoptosis and inhibits cell migration and invasion, J BUON, 25(2), 1251-1256. Link

Ikawati, M., and Septisetyani, E.P., 2018, Pentagamavunone-0 (PGV-0), a curcumin analog, enhances cytotoxicity of 5-fluorouracil and modulates cell cycle in WiDr colon cancer cells, Indones. J. Cancer Chemoprev., 9(1), 23-31. CrossRef

Indrayanto, G., Putra, G.S., and Suhud, F., 2020, Validation of in-vitro bioassay methods: Application in herbal drug research, Profiles Drug Subst. Excip. Relat. Method., 46, 273-307. CrossRef

Jie, L.H., Jantan, I., Yusoff, S.D., Jalil, J., and Husain, K., 2021, Sinensetin: An insight on its pharmacological activities, mechanisms of action and toxicity, Front. Pharmacol., 11, 553404. CrossRef

Kartini, K., Putri, R.E., and Budiono, R., 2023, Quantification of sinensetin in Orthosiphon stamineus from various phytogeographical zones in Indonesia, J. Applied Pharm. Sci., 13(3), 183-191. CrossRef

Larasati, Y.A., Yoneda-Kato, N., Nakamae, I., Yokoyama, T., Meiyanto, E., and Kato, J. Y., 2018, Curcumin targets multiple enzymes involved in the ROS metabolic pathway to suppress tumor cell growth, Sci. Rep., 8(1), 2039. CrossRef

Mulyati, G.D., Nurani, L.H., and Widyarini, S., 2017, Effects of co-chemotherapy ethyl acetate fraction of Eurycoma longifolia jack roots

and doxorubicin against apoptosis through expression p53 mutant and Bcl-2, Indones. J. Med. & Health, 9(1), 68-77. CrossRef

Musyayyadah, H., Wulandari, F., Nangimi, A.F., Anggraeni, A.D., Ikawati, M., and Meiyanto, E., 2021, The growth suppression activity of diosmin and PGV-1 co-treatment on 4T1 breast cancer targets mitotic regulatory proteins, Asian Pac. J. Cancer Prev., 22(9), 2929-2938. CrossRef

Novitasari, D., Meiyanto, E., Kato, J.Y., and Jenie, R.I., 2022, Antimigratory Evaluation from Curcumin-Derived Synthetic Compounds PGV-1 and CCA-1.1 on HCC1954 and MDA-MB-231 Cells, Indones. J. Cancer Chemoprev., 13(2), 71-82. CrossRef

Okoro, N., Iheanacho, S.C., Nwakpa, J., and Eze, K., 2019, Effects of Chromolaena odorata leaf extract on behaviour and haematology of Clarias gariepinus juveniles (Burchell, 1822), African J. Aquatic Sci., 44(4), 421-427. CrossRef

Olawale, F., Olofinsan, K., and Iwaloye, O., 2022, Biological activities of Chromolaena odorata: A mechanistic review, S. Afr. J. Bot., 144, 44-57. CrossRef

Pena-Moran, O.A., Villarreal, M.L., Alvarez-Berber, L., Meneses-Acosta, A., and Rodriguez-Lopez, V., 2016, Cytotoxicity, post-treatment recovery, and selectivity analysis of naturally occurring podophyllotoxins from Bursera fagaroides var. fagaroides on breast cancer cell lines, Molecules, 21(8), 1013. CrossRef

Rawat, P.S., Jaiswal, A., Khurana, A., Bhatti, J.S., and Navik, U., 2021, Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management, Biomed. Pharmacother., 139, 111708. CrossRef

Reynolds, C.P., and Maurer, B.J., 2005, Evaluating response to antineoplastic drug combinations in tissue culture models, Methods Mol. Med., 110, 173-183. CrossRef

Tahir, K.A., Miskad, U.A., Djawad, K., Djide, S., Khaerani, K., and Indrisari, M., 2021, Evaluation of Antioxidant Activity of Botto-Botto Leaf Fraction (Chromolaena odorata L.) Using DPPH and ABTS Methods, Open Access Maced. J Med. Sci., 9(A), 183-188. Link

Salsabila, D.U., Wardani, R.K., Hasanah, N.U., Tafrihani, A.S., Zulfin, U.M., Ikawati, M., et al., 2023, Cytoprotective Properties of Citronella Oil (Cymbopogon nardus (L.) Rendl.) and Lemongrass Oil (Cymbopogon citratus (DC.) Stapf) through Attenuation of Senescent-Induced Chemotherapeutic Agent Doxorubicin on Vero and NIH-3T3 Cells, Asian Pac. J. Cancer Prev., 24(5), 1667-1675. CrossRef

Salsabila, I.A., Nugraheni, N., Ahlina, F.N., Haryanti, S., and Meiyanto, E., 2021, Synergistic cotreatment potential of soursop (Annona muricata L.) leaves extract with Doxorubicin on 4T1 cells with antisenescence and anti-reactive-oxygen-species properties, Iran. J. Pharm. Res., 20(2), 57-67. CrossRef

Sirinthipaporn, A., and Jiraungkoorskul, W., 2017, Wound healing property review of siam weed, Chromolaena odorata, Pharmacogn. Rev., 11(21), 35-38. CrossRef

Solikhah, E.P., Jumina, Widyarini, S., Hadanu, R., and Mustofa, 2018, In vitro anticancer activity of N-benzyl 1,10-phenanthroline derivatives on human cancer cell lines and their selectivity, Indones. J. Biotechnol., 23(2), 68-73. CrossRef

Tan, K.T., Lin, M.X., Lin, S.C., Tung, Y.T., Lin, S.H., and Lin, C.C., 2019, Sinensetin induces apoptosis and autophagy in the treatment of human T-cell lymphoma, Anticancer Drugs, 30(5), 485-494. CrossRef

World Health Organization, 2017, Cytotoxicity: in vitro determination., Website: https://www.who.int/tdr/grants/workplans/en/cytotoxicity_invitro.pdf, accessed on November 17, 2021.

Yusuf, H., Husna, F., Gani, B.A., and Garrido, G., 2021, The chemical composition of the ethanolic extract from Chromolaena odorata leaves correlates with the cytotoxicity exhibited against colorectal and breast cancer cell lines, J. Pharm. Pharmacogn. Res., 9(3), 344-356. CrossRef

Zahara, M., 2019, Description of Chromolaena odorata LRM King and H. Robinson as medicinal plant: A Review, IOP Conf. Ser. Mat. Sci. and Eng., 506(1), 012022. CrossRef

Zulfin, U.M., Rahman, A., Hanifa, M., Utomo, R.Y., Haryanti, S., and Meiyanto, E., 2021, Reactive oxygen species and senescence modulatory effects of rice bran extract on 4T1 and NIH-3T3 cells co-treatment with doxorubicin, Asian Pac. J. Trop. Biomed., 11(4), 174-182. CrossRef




DOI: http://dx.doi.org/10.14499/indonesianjcanchemoprev14iss3pp160-170

Copyright (c) 2023 Indonesian Journal of Cancer Chemoprevention

Indexed by:

                  

               

 

Indonesian Society for Cancer Chemoprevention