Potential Inhibition of Melaleuca leucadendron L. Compounds Against the NSP5 SARS CoV-2 Protein

Ira Resmi Melani, Muhammad Farid Wafi, Mohammad Reza Riandinata, Putri Aulawiya Rosyida Halim, Roihatul Muti'ah, Dewi Santosaningsih


COVID-19 is an infectious disease caused by Severe Acute Respiratory Syndrome (SARS-CoV-2), causing a global health emergency as a pandemic disease. The lack of certain drug molecules or treatment strategies to fight this disease makes it worse. Therefore, effective drug molecules are needed to fight COVID-19. Non Structural Protein (NSP5) or called Main Protease (Mpro) of SARS CoV 2, a key component of this viral replication, is considered a key target for anti-COVID-19 drug development. The purpose of this study is to determine whether the compounds in the Melaleuca leucadendron L. plant such as 1,8-cineole, terpene, guaiol, linalol, α-selinenol, β-eudesmol and γ-eudesmol are predicted to have antiviral activity for COVID-19. Interaction of compounds with NSP5 with PDB code 6WNP analyzed using molecular docking with Molegro Virtual Docker. Based on binding affinity, the highest potential as an anti-viral is Terpineol with binding energy (-119.743 kcal/mol). The results of the interaction showed that terpinol has similarities in all three amino acid residues namely Cys 145, Gly 143, and Glu 166 with remdesivir and native ligand. Melaleuca leucadendron L. may represent a potential herbal treatment to act as: COVID-19 NSP5, however these findings must be validated in vitro and in vivo.

Keywords: COVID-19, In Silico, NSP5/ 6WNP, Melaleuca leucadendron L.

Full Text:



Astani, A., Reichling, J., and Schnitzler, P., 2010, Comparative study on the antiviral activity of selected monoterpenes derived from essential oils, Phytother Res., 24(5), 673-679. CrossRef

Danta, C.C., 2020, CNS Penetration Ability: A Critical Factor for Drugs in the Treatment of SARS-CoV-2 Brain Infection, ACS Chemical Neuroscience, 11, 2137–2144. CrossRef

David, A.M., Wysocki, J., and Batlle, D., 2020, Interaction of Sars-Cov-2 and Other Coronavirus with Ace (Angiotensin-Converting Enzyme)-2 as Their Main Receptor: Therapeutic Implications, Hypertension., 76, 1339– 1349. CrossRef

de Oliveira, M.G.B., Marques, R.B., de Santana, M.F., Santos, A.B.D., Brito, F.A., Barreto, E.O., et al., 2012, α-terpineol reduces mechanical hypernociception and inflammatory respons, Basic Clin Pharmacol Toxicol., 111(2), 120-125. CrossRef

Dona, R., Frimayanti, N., Ikhtiarudin, I., Iskandar, B., Maulana, F., and Silalahi, N.T., 2019, Studi In Silico, Sintesis, dan Uji Sitotoksik Senyawa P-Metoksi Kalkon terhadap Sel Kanker Payudara MCF-7, Journal Sains Farm. Klin., 6, 243. CrossRef

Gil, C., Ginex, T., Maestro, I., Nozal, V., Barrado-Gil, L., Cuesta-Geijo, M.A., et al., 2020, COVID-19: Drug Targets and Potential Treatments, J Med Chem., 63, 12359–12386. CrossRef

Ikawati, Z., Hertiani, T., and Izzati, F., 2019, Immunomodulatory Activity of an Indonesian Herbal Formulation for Respiratory Disorder, Pharmacognosy Magazine., 15(60), 130-134. CrossRef

Jaganathan, K., Tayara, H., and Chong, K.T., 2021, Prediction of Drug-Induced Liver Toxicity Using SVM and Optimal Descriptor Sets, Int J Mol Sci, 22(15), 8073. CrossRef

Jamuna, S., Rathinavel, A., Sadullah, S.M.S., and Devaraj, S.N., 2018, In Silico Approach to Study the Metabolism and Biological Activities of Oligomeric Proanthocyanidin Complexes, Indian J Pharmacol., 50(5), 242–250. CrossRef

Khan, A., Khan, M.T., Saleem, S., Junaid, M., Ali, A., Ali, S.S., et al., 2020, Structural Insights into the Mechanism of RNA Recognition by The N-Terminal RNA Binding Domain of The SARS-CoV-2 Nucleocapsid Phosphoprotein, Comput. Struct. Biotechnol. J., 18, 2174–2184. CrossRef

Liu, T., Hu, J., Kang, M., Lin, L., Zhong, H., Xiao, J., et al., 2019, Transmission Dynamics of 2019 Novel Coronavirus (2019-nCoV), BioRxiv. CrossRef

Lokhande, K.B., Doiphode, S., Vyas, R., and Swamya, K.V., 2020, Molecular Docking and Simulation Studies on SARS-CoV-2 Mpro Reveals Mitoxantrone, Leucovorin, Birinapant, and Dynasore as Potent Drugs Against COVID-19, Journal of Biomolecular Structure and Dynamics., 39(18), 7294-7305. CrossRef

Makiyah, A., and Tresnayanti, S., 2017, Uji Toksisitas Akut yang Diukur dengan Penentuan LD50 Ekstrak Etanol Umbi Iles-iles (Amorphophallus variabilis Bl.) pada Tikus Putih Strain Wistar, Majalah Kedokteran Bandung (Bandung Medical Journal), 49(3), 146-155. CrossRef

Magro, G., 2020, SARS-CoV-2 and COVID-19: Is Interleukin-6 (IL-6) the ’culprit Lesion’ of ARDS Onset? what Is There besides Tocilizumab? SGP130Fc, Cytokine X, 2(2), 100029. CrossRef

Mehta, P., McAuley, D.F., Brown, M., Sanchez, E., Tattersall, R.S., Manson, J.J., et al., 2020, COVID-19: Consider Cytokine Storm Syndromes and Immunosuppression, Lancet, 395(10229), 1033-1034. CrossRef

Melendez-Hevia, E., de Paz-Lugo, P., and Sanchez, G., 2021, Glycine Can Prevent and Fight Virus Invasiveness by Reinforcing The Extracellular Matrix, Journal of Functional Foods., 76, 104318. CrossRef

Ouassou, H., Kharchoufa, L., Bouhrim, M., Daoudi, N.E., Imtara, H., Bencheikh, N., et al., 2020, The Pathogenesis of Coronavirus Disease 2019 (COVID-19): Evaluation and Prevention, Journal of Immunology Research, 2020, 1357983. CrossRef

Patramurti, C., Amin, R., Nastiti, C.M.R.R., and Hariono, M., 2020, A Review on the Potency of Melaleuca leucadendron Leaves Solid Waste in Wood Preservation and Its In Silico Prediction upon Biological Activities, International Journal of Forestry Research., 2020(8885259), 1-13. CrossRef

Pires, D.E.V., Blundell, T.L., and Ascher, D.B., 2015, pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures, Journal of Medical Chemistry, 58(9), 4066-4072. CrossRef

Ron-Harel, N., Ghergurovich, J.M., Notarangelo, G., LaFleur, M.W., Tsubosaka, Y., Sharpe, A.H., et al., 2019, T Cell Activation Depends on Extracellular Alanine, Cell Reports., 28, 3011-3021. CrossRef

Ruswanto, R., 2019, Bioaktivitas dan Studi In Silico Senyawa Turunan N’-Benzoylisonicotinohydrazide (4-Methyl, 4-Chloro Dan 3,5-Dinitro) pada Mycobacterium Tuberculosis (H37rv) Bakteri Gram Positif serta Bakteri Gram Negatif, Pharmacoscript., 2(2), 37–48. CrossRef

Santos, L.H.S., Ferreira, R.S., and Caffarena, E.R., 2019, Integrating Molecular Docking and Molecular Dynamics Simulations, Methods Mol Biol., 2053, 13-34. CrossRef

Srivastava, V., Yadav, A., and Sarkar, P., 2022, Molecular Docking and ADMET Study of Bioactive Compounds of Glycyrrhiza Glabra Against Main Protease of SARS-CoV2- Preoseding, Mater Today Proc., 49, 2999–3007. CrossRef

Stobart, C.C., Sexton, N.R., Munjal, H., Lu, X., Molland, K.L., Tomar, S., et al., 2013, Chimeric Exchange of Coronavirus NSP5 Proteases (3CLpro) Identifies Common and Divergent Regulatory Determinants of Protease Activity, Journal of Virology., 87(23), 12611-12618. CrossRef

Sudradjat, S.E., 2020, Minyak Kayu Putih, Obat Alami dengan Banyak Khasiat: Tinjauan Sistematik, Jurnal Kedokteran Meditek., 26(2), 51-59. CrossRef

Syahputra, G., Ambarsari, L., and Sumaryada, T., 2014, Simulasi Docking Kurkumin Enol, Bisdemetoksikurkumin dan Analognya sebagai Inhibitor Enzim 12-Lipoksigenase, Jurnal Biofisika, 10(1), 55-67. Link

Wang D., Hu, B., Hu, C., Zhu, F., Liu, X., Zhang, J., et al., 2020, Clinical Characteristics of 138 Hospitalized Patients with 2019 Novel Coronavirus–Infected Pneumonia in Wuhan, China, Jama, 323(11), 1061–1069. CrossRef

Warren, T.K., Jordan, R., Lo, M.K., Ray, A.S., Mackman, R.L., Soloveva, V., et al., 2016, Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys, Nature, 531(7594), 381-385. CrossRef

Zu, Z.Y., Jiang, M.D., Xu, P.P., Chen, W., Ni, Q.Q., Lu, G.M., and Zhang, L.J., 2020, Coronavirus Disease 2019 (COVID-19): A Perspective from China, Radiology, 296(2), E15–E25. CrossRef

DOI: http://dx.doi.org/10.14499/indonesianjcanchemoprev13iss3pp195-206

Copyright (c) 2022 IRA RESMI MELANI

Indexed by:




Indonesian Society for Cancer Chemoprevention