Protein-protein Docking Studies of Estrogen Receptor Alpha and TRIM56 Interaction for Breast Cancer Drug Screening

Binar Asrining Dhiani, Nunuk Aries Nurulita, Fitriyani Fitriyani

Abstract


Breast cancer is the highest mortality cause in women with cancer. Protein-protein docking for target-based screening is an effective approach in breast cancer drug discovery via estrogen receptor (ER) signaling. TRIM56, an E3 ubiquitin protein ligase, can bind to and stabilize ER alpha. Thus, drug screening that can inhibit or weaken the interaction between ER alpha and TRIM56 is promising to obtain novel yet specific breast cancer drugs. In this study, we performed protein-protein docking studies for ER alpha and TRIM56 interaction and virtual screening for FDA-approved drugs from the ZINC database against ER alpha and TRIM56 complex protein model structure. We utilized Cluspro 2.0, PyRx 0.8, and Pymol 2.4.1 to conduct protein-protein docking, virtual screening, and model structure visualization. PIP and PLIP software were also applied to analyze the amino acid residue between proteins or protein-ligands. Based on the protein-protein docking, ER alpha and TRIM56 established interaction. Utilizing this complex protein as a macromolecule in the virtual screen of 1071 molecules of FDA-approved drugs, we obtain the top five lowest binding energy molecules i.e., dutasteride, dihydroergotamine, nilotinib, ergotamine, and bromocriptine. In addition, the energy binding affinity between ER alpha-dutasteride complex with TRIM56 was weakened in the presence of dutasteride. In conclusion, protein-protein docking between ER alpha-TRIM56 was able to select FDA-approved drugs that could bind to the complex, and dutasteride binding to ER alpha-TRIM56 complex weakened the interaction.


Keywords: protein-protein docking, estrogen receptor alpha, TRIM56, breast cancer, ubiquitin.


Full Text:

PDF

References


Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., and Jemal, A., 2018, Global Cancer Statistics 2018: GLof Incidence and Mortality World in 185 Countries, CA Cancer J ClinAnticancer Res., 68(6), 394-424. CrossRef

Chang, M., 2012, Tamoxifen resistance in breast cancer, Biomolecules and Therapeutics, 20(3), 256-267. CrossRef

Dallakyan, S., and Olson, A.J., 2015, Small-molecule library screening by docking with PyRx, in: Hempel, J., Williams, C., Hong, C. (eds) Chemical Biology, Methods in Molecular Biology, 1263, Humana Press, New York, NY. CrossRef

Duong, V., Boulle, N., Daujat, S., Chauvet, J., Bonnet, S., Neel, H., and Cavaillès, V., 2007, Differential Regulation of Estrogen Receptor α Turnover and Transactivation by Mdm2 and Stress-Inducing Agents, Cancer Res., 67(11), 5513–5521. CrossRef

Eakin, C.M., MacCoss, M.J., Finney, G.L., and Klevit, R.E., 2007, Estrogen receptor α is a putative substrate for the BRCA1 ubiquitin ligase, Proc. Natl. Acad. Sci., 104(14), 5794–5799. CrossRef

https://www.rcsb.org/,n.d.,RCSB PDB: Homepage Retrieved February 5, 2022, from https://www.rcsb.org/.

Kaczor, A.A., Bartuzi, D., Stępniewski, T.M., Matosiuk, D., and Selent, J., 2018, Protein–protein docking in drug design and discovery, in Methods in Molecular Biology, 1762, 285–305. CrossRef

Kondakova, I.V., Shashova, E.E., Sidenko, E.A., Astakhova, T.M., Zakharova, L.A., and Sharova, N.P., 2020, Estrogen Receptors and Ubiquitin Proteasome System: Mutual Regulation, Biomolecules, 10(4), 500. CrossRef

Kozakov, D., Grove, L.E., Hall, D.R., Bohnuud, T., Mottarella, S.E., Luo, L., et al., 2015, The FTMap family of web servers for determining and characterizing ligand-binding hot spots of proteins, Nat. Protoc., 10, 733-755. CrossRef

Kozakov, D., Hall, D.R., Xia, B., Porter, K.A., Padhorny, D., Yueh, C., Beglov, D., and Vajda, S., 2017, The ClusPro web server for protein–protein docking, Nat. Protoc., 12(2), 255-278. CrossRef

Nilsson, S., and Gustafsson, J.Å., 2011, Estrogen receptors: Therapies targeted to receptor subtypes, Clin. Pharmacol. Ther., 89(1), 44-55. CrossRef

Porter, K.A., Desta, I., Kozakov, D., and Vajda, S., 2019, What method to use for protein–protein docking?, Curr. Opin. Struct. Biol., 55, 1–7. CrossRef

Rodriguez-Gonzalez, A., Cyrus, K., Salcius, M., Kim, K., Crews, C.M., Deshaies, R.J., and Sakamoto, K.M., 2008, Targeting steroid hormone receptors for ubiquitination and degradation in breast and prostate cancer, Oncogene, 27(57), 7201–7211. CrossRef

Rozner, R.N., Freites-Martinez, A., Shapiro, J., Geer, E.B., Goldfarb, S., and Lacouture, M.E., 2019, Safety of 5α-reductase inhibitors and spironolactone in breast cancer patients receiving endocrine therapies, Breast Cancer Res. Treat., 174(1), 15. CrossRef

Salentin, S., 2015, PLIP: fully automated protein-ligand interaction profiler, Nucl. Acids Res., 43(W1), W443–W447. CrossRef

Shen, Y., Li, N.L., Wang, J., Liu, B., Lester, S., and Li, K., 2012, TRIM56 Is an Essential Component of the TLR3 Antiviral Signaling Pathway, J. Biol. Chem., 287(43), 36404–36413. CrossRef

Sterling, T., and Irwin, J.J., 2015, ZINC 15–Ligand Discovery for Everyone, J. Chem. Inf. Model., 55(11), 2324–2337. CrossRef

Tecalco-Cruz, A.C., Ramírez-Jarquín, J.O., and Cruz-Ramos, E., 2019, Estrogen Receptor Alpha and its Ubiquitination in Breast Cancer Cells, Curr. Drug Targets, 20(6), 690-704. CrossRef

Vakser, I.A., 2014, Protein-Protein Docking: from Interaction to Interactome, Biophys. J., 107(8), 1785. CrossRef

Viedma-RodríGuez, R., Baiza-Gutman, L., Salamanca-Gómez, F., Diaz-Zaragoza, M., Martínez-Hernández, G., Esparza-Garrido, R.R., Velázquez-Flores, M.A., and Arenas-Aranda, D., 2014, Mechanisms associated with resistance to tamoxifen in estrogen receptor-positive breast cancer (review), Oncol. Rep., 32(1), 3–15. CrossRef

Von Wahlde, M.K., Hülsewig, C., Ruckert, C., Götte, M., Kiesel, L., and Bernemann, C., 2015, The anti-androgen drug dutasteride renders triple negative breast cancer cells more sensitive to chemotherapy via inhibition of HIF-1α-/VEGF-signaling, Gynecol Endocrinol, 31(2), 160-164. CrossRef

Xue, M., Zhang, K., Mu, K., Xu, J., Yang, H., Liu, Y., et al., 2019, Regulation of estrogen signaling and breast cancer proliferation by an ubiquitin ligase TRIM56, Oncogenesis, 8(5), 30. CrossRef

Yang, H., Yu, N., Xu, J., Ding, X., Deng, W., Wu, G., et al., 2018, SMURF1 facilitates estrogen receptor a signaling in breast cancer cells, J. Exp. Clin. Cancer Res., 37(1), 1–12. CrossRef




DOI: http://dx.doi.org/10.14499/indonesianjcanchemoprev13iss1pp46-54

Copyright (c) 2022 Binar Asrining Dhiani

Indexed by:

                  

               

 

Indonesian Society for Cancer Chemoprevention