Free Radical Scavenging and In vitro Cytotoxic Activity of Bugnay (Antidesma bunius) Leaves Extract against A549 Human Lung Adenocarcinoma and HCT-116 Human Colorectal Cancer Cell Lines

Arnold Joseph O. Geronimo, Mari Erika Joi F. Bancual, Karl Anthony L. Ko, Lycon Marie L. Soliba, Jeric John C. Ildefonso, Angelica Mae B. Soriano, Alta Christine Marie M. Tagalog, Nikolai E. Acosta, Vincent S. Ang, Mariebon A. Apigo, Dana Grace S. Buenconsejo, Joanna Kaitlin G. Chan, Cassandra B. Gresh, Crisel B. Santos, Leo Emmanuel R. Buñag, John Anthony A. Domantay


Cancer is one of the significant causes of mortality worldwide. Studies on antineoplastic drugs focused on natural products have revealed several mechanisms to inhibit cancer cells. Bugnay (Antidesma bunius) leaves showed potentials due to its activity observed against brine shrimp and breast cancer cells. However, there is still limited knowledge about its activity against other human cancer cells. This study focused on determining the phytochemical compounds in A. bunius leaves extract, the free radical scavenging activity of the extract using the Diphenylpicrylhydrazyl (DPPH) method, and in vitro cytotoxic activity against two cancer cell lines, namely HCT-116 human colorectal and A549 human lung adenocarcinoma cancer cell lines by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The phytochemicals identified were unsaturated lactones, flavonoids, phenolics, diterpenes, saponins, tannins, carbohydrates, and reducing sugars. The extract showed significant free radical scavenging activity and a direct correlation of activity with concentration levels. It also exhibited cytotoxic activity against HCT-116 human colorectal and A549 human lung adenocarcinoma. Hence, A. bunius leaves have the potential to be a source of antioxidant and antineoplastic compounds. This warrant further isolation of the compounds for chemotherapeutic purposes.

Keywords: Antidesma bunius, Bugnay, Cancer, Cytotoxicity, Radical

Full Text:



Abotaleb, M., Samuel, S., Varghese, E., Varghese, S., Kubatka, P., Liskova, A. and Busselberg, D., 2019, Flavonoids in cancer and apoptosis, Cancers (Basel), 11(1), 28. CrossRef

Al-Taweel, A.M., Perveen, S., Fawzy, G.A., Ibrahim, G.A., Khan, A. and Mehmood, R., 2015, Cytotoxicity assessment of six different extracts of Abelia triflora leaves on A-549 human lung adenocarcinoma cells, Asian Pac. J. Cancer Prev., 16, 4641–4645.

Araújo, J.R., Goncalves, P. and Martel, F., 2011, Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines, Nut. Res., 77-87. CrossRef">CrossRef

Ballesteros, L.F., Teixeira, J.A. and Mussatto, S.I., 2014, Selection of the solvent and extraction conditions for maximum recovery of antioxidant phenolic compounds from coffee silver skin, Food Bioprocess Technol., 7, 1322-1332. CrossRef

Barcelo, R.C., 2015, Phytochemical Screening and Antioxidant Activity of Edible Wild Fruits in Benguet, Cordillera Administrative Region, Philippines, Electronic Journal of Biology, 11(3), 80-89.

Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A. and Jemal, A., 2020, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries, CA Cancer J. Clin., 70(4), 313. CrossRef

Butkhup, L. and Samappito, S., 2008, An analysis on flavonoids contents in mao luang fruits of fifteen cultivars (Antidesma bunius), grown in northeast Thailand, Pak. J. Biol. Sci., 11(7), 996-1002. CrossRef

Calin, G.A., Trapasso, F., Shimizu, M., Dumitru, C.D., Yendamuri, S., Godwin, A.K., et al., 2005, Familial cancer associated with a polymorphism in ARLTS1, N Engl J Med, 352(16), 1667-1676. CrossRef

Chen, Y., Miao, Y., Huang, L., Li, J., Sun, H., Zhao, Y., Yang, J. and Zhou, W., 2014, Antioxidant activities of saponins extracted from Radix trichosanthis: an in vivo and in vitro evaluation, BMC Complement Altern. Med., 5(14), 86. CrossRef

Clarke, G., Ting, K.N., Wiart, C. and Fry, J., 2012, High correlation of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging, ferric reducing activity potential and total Phenolics content indicates redundancy in use of all three assays to screen for antioxidant activity of extracts of plants from the Malaysian rain forest, Antioxidants, 2(1), 1-10. CrossRef

Daglia, M., 2012, Polyphenols as antimicrobial agents, Curr. Opin. Biotechnol., 23(2), 174-81. CrossRef

Dapat, E., Jacinto, S. and Efferth, T., 2013, A phenolic ester from Aglaia loheri leaves reveals cytotoxicity towards sensitive and multidrug-resistant cancer cells, BMC Complement. Altern. Med., 13, 286. CrossRef

Do, Q.D., Angkawijaya, A.E., Tran-Nguyen, P.L., Huynh, L.H., Soetaredjo, F.E., Ismadji, S., et al, 2014, Effect of extraction solvent for total phenol content, total flavonoid content & antioxidant activity of Limnophilia aromatica, J. Food Drug Anal., 22(3), 296-302. CrossRef

Donato, F. and Romagnolo, O.I., 2012, Flavonoids and cancer prevention: a review of the evidence, J. Nutr. Gerontol. Geriatr., 31(3), 206-38. CrossRef

El-Tantawy, W., Soliman, N., El-naggar, D. and Shafei, A., 2015, Investigation of antidiabetic action of Antidesma buniusextract in type 1 diabetes, Archives of Physiology and Biochemistry, 121(3), 116-122. CrossRef

Fatiha, M. and Abdelkader, T., 2019, Study of antioxidant activity of pyrimidinium betaines by DPPH radical scavenging method, Journal of Analytical & Pharmaceutical Research, 8(2), 33-36. CrossRef

Gong, W., Wu, J., Liu, B., Zhang, H., Cao, Y., Sun, J., and Dong, J., 2014, Flavonoid components in Scutellaria baicalensis inhibit nicotine-induced proliferation, metastasis and lung cancer-associated inflammation in vitro, Int. J. Oncol., 44(5), 1561-70. CrossRef

Guevara, B.Q., 2005, A guidebook to plant screening:phytochemical and biological, Manila: UST Publishing House, 156. Link

Hamiza, O.O., Rehman, M.U., Tahir, M., Khan, R., Khan, A.Q., Lateef, A., et al., 2012, Amelioration of 1,2 dimethylhydrazine (DMH) induced colon oxidative stress, inflammation and tumor promotion response by tannic acid in wistar rats, Asian Pac. J. Cancer Prev., 13(9), 4393-4402. CrossRef

He, H., Zheng, L., Sun, Y., Zhang, G. and Yue, Z.. 2014, Steroidal saponins from Paris polyphylla suppress adhesion, migration and unvasion of human lung cancer A549 cells via down-regulating MMP-2 and MMP-9, Asian Pac. J. Cancer Prev., 15(24), 10911-10916. CrossRef

Islam, S., Koly, S., Zaman, S., Sukorno, F., Ahammed, S., Munira, S. and Hridoy, R., 2018, Estimation of phytochemical, antioxidant screening profile and thrombolytic activities of methanolic extract of Antidesma bunius L. leaf., Int. J. Hortic. Sci. Technol., 6, 358-363. CrossRef

Jorjong, S., Butkhup, L. and Samappito, S., 2015. Phytochemicals and antioxidant capacities of Mao-Luang (Antidesma bunius L.) cultivars from Northeastern Thailand, Food Chemistry, 181, 248-255. CrossRef

Juan, M.E., Muaña, C.G., Comiso, J.L., Leon, R.M., Guinto, C.C., Honorio, T.A., Ibut, M.A. and Zanoria, S.A., 2014, Antiangiogenic property of bignay (Antidesma bunius) ethanolic leaf extraction in duck (Anas luzonica) embryo using chorioallantoic membrane (CAM) assay, Root Gatherers Journal, 7(1), 1-16.

Kassem, M.E.S., Hashim, A.N. and Hassanein, HM, 2013, Bioactivity of Antidesma bunius leaves (Euphorbiaceae) and their major phenolic constituents, Eur. Sci. J., 9(18), 217-228. CrossRef

Khanna, C., Rosenberg, M. and Vail, D.M., 2015, A Review of Paclitaxel and Novel Formulations including Those Suitable for Use in Dogs, JVIM, 29(4), 1006-1012. CrossRef

Man, S., Gao, W., Zhang, Y., Huang, L. and Liu, C., 2010, Chemical study and medical application of saponins as anticancer agents, Fitoterapia, 81(7), 703-714. CrossRef

Micor, J.R.L., Deocaris, C.C. and Mojica, E.E., 2005, Biological activity of bignay [Antidesma bunius (L.) Spreng] crude extract in Artemia salina, J. Med. Sci., 5(3), 195-198. CrossRef

Mohan, A., Sethuraman, S., Narayanan, S. and Krishnan, U.M., 2013, Combinations of plant polyphenols & anticancer molecules: a novel treatment strategy for cancer chemotherapy, Anticancer Agents Med. Chem., 13(2), 281-95. CrossRef

Mondal, S., Ghosh, M.K., Bandyopadhyay, S., Mukhopadhyay, S., Mandal, C. and Roy, S., 2012, Natural Products: Promising resources for cancer drug discovery, Anticancer Agents Med. Chem., 12(1), 49-75. CrossRef

Mosmann, T., 1983, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods, 65, 55-63. CrossRef

Olsen, N. and Ware, M., 2018, Antioxidants: health benefits and nutritional information. Medical News Today, Website from: Accessed on April 12, 2019.

Ozcan, T., Akpinar-Bayizit, A., Yilmaz-Ersan, S. and Delikanli, B., 2014, Phenolics in human health, IJCEA, 5(5), 393-396. CrossRef

Perez, R. and Ahuatzi, D., 2015, Investigating antioxidant properties of the diterpenes from seeds of Phalariscanariensis, J. Nutr. Food Sci., 5(4), 376. CrossRef

Reid, W., Mooney, H., Cropper, A. and Capistrano, D., 2005, Ecosystems and Human Well-being: Synthesis. Website,; accessed on July 12 2020.

Riaz, T., Abbasi, M., Rehman, A., Shahzadi, T., Ajaib, M., and Khan, K., 2012, Phytochemical screening, free radical scavenging, antioxidant activity and phenolic content of Dodonaea viscosa Jacq., J. Serb. Chem. Soc., 77(4), 423–435. CrossRef

Siegel, R.L., Miller, K.D. and Jemal, A., 2019, Cancer statistics, CA Cancer J Clin., 69(1), 7-34. CrossRef

Škrovánková, S., Mišurcová, L. and Machů, L., 2012. Antioxidant Activity and Protecting Health Effects of Common Medicinal Plants, Advances in Food and Nutrition Research, 67, 75-139. CrossRef

Subarnas, A., Diantini, A., Abdulah, R., Zuhrotun, A. Yamazaki Kobayashi, C., Nakazawa, M. and Koyama, H., 2012, Antiproliferative activity of primates-consumed plants against MCF-7 human breast cancer cell lines, E3 Journal of Medical Research, 1, 38-43.

Suffness, M. and Pezzuto, J.M., 2009, Assay related to cancer drug discovery. In: Hostettman K, editor. Methods in plant biochemistry: assay for bioactivity. London: Academic Press 71–133.

Tantengco, O.A., Limbo, C., Montaño, M.N. and Jacinto, S., 2015, Cytotoxic activity of crude extract and fractions from Sargassum siliquosum (JG Agardh) and other seaweeds against selected human cancer cell lines, International Journal of Biosciences, 7(2), 207–215.

Vasas, A. and Hohmann, J., 2014, Euphorbia diterpenes: isolation, structure, biological activity and synthesis, Chem. Rev., 114(17), 8579-8612. CrossRef

Yang, B., Kong, L., Wang, X., Zhang, Y., Li, R., Yang, M., and Luo, J., 2016, Nitric oxide inhibitory activity and absolute configurations of arylalkenyl α, β-unsaturated δ/γ-lactones from Cryptocaryaconcinna, J. Nat. Prod., 79(1), 196-203. CrossRef

Yildirim, I. and Kutlu, 2015, Anticancer Agents: Saponin and Tannin, International Journal of Biological Chemistry, 9(6), 332-340. CrossRef

Yu, Z., Zhang, T., Zhou, F., Xiao X., Ding, X., He, H., et al., 2015, Anticancer activity of saponins from Allium chinense against the B16 melanoma and 4T1 breast carcinoma cell, Evid. Based Complement Alternat. Med., 2015(725023), 1-12. CrossRef

Zaman, S., Islam, M., Koly, S., Faisal, T. and Rakib, K., 2018. Evaluation of Cytotoxicity and Antibacterial Activities of Methanolic Extract of Antidesma bunius (Linn.) (Family Euphorbiaceae) Leaf, Journal of Advances in Medical and Pharmaceutical Sciences, 16(2), 1-7. CrossRef

Zhou, Y., Wan, G., Spizzo, R., Ivan, C., Mathur, R., Hu, X., et al., 2014, miR-203 induces oxaliplatin resistance in colorectal cancer cells by negatively regulating ATM kinase, Mol. Oncol., 8(1), 83-92. CrossRef

Zulkipli, I., David, S., Rajabalaya, R. and Idris, A., 2015, Medicinal plants: a potential source of compounds for targeting cell division, Drug Target Insights, 9, 9-19. CrossRef


Copyright (c) 2020 Arnold Joseph Geronimo, Mari Erika Joi Bancual, Karl Anthony Ko, Lycon Marie Soliba, Nikolai Acosta, Vincent Ang, Mariebon Apigo, Dana Grace Buenconsejo, Joanna Kaitlin Chan, Cassandra Gresh, Jeric John Ildefonso, Crisel Santos, Angelica Mae Soriano, Alta Christine Marie Tagalog, Leo Emmanuel Buñag, John Anthony Domantay

Indexed by:




Indonesian Society for Cancer Chemoprevention