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Abstract

Breast cancer is the most common cancer among women. Tamoxifen, a widely used

estrogen receptor-alpha (ER-a) inhibitor, is effective but often causes side effects, necessitating
the search for alternative inhibitors from natural sources. Ortosiphon aristatus, also known
as cat's whiskers, is a medicinal plant traditionally valued for its anti-inflammatory and
antioxidant properties. Recent studies suggest its bioactive compounds may exhibit anticancer
activity by inducing apoptosis in cancer cell lines. This study explores the potential of O.
aristatus metabolites as ER-a inhibitors using computational approaches. Nine metabolites
were assessed for their physicochemical properties based on Lipinski’s rule of five and ADMET
predictions, followed by pharmacophore-based virtual screening with LigandScout and
molecular docking with AutoDock. The results showed that all tested compounds complied with
Lipinski’s rule, and most met ADMET criteria. Among these, rosmarinic acid was identified as
one of the hit compounds based on pharmacophore screening, exhibiting binding interactions
comparable to 4-hydroxytamoxifen with the ER-a amino acid residues HIS524 and GLY521. It
also demonstrated a binding energy of -8.02 kcal/mol and a low inhibition constant (Ki) of
1.31 uM. These findings highlight the potential of O. aristatus and rosmarinic acid for further
evaluation as candidates against ER-a in breast cancer cells.
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INTRODUCTION

Breast cancer is a condition where there
is uncontrolled cell growth in the breast tissue,
causing a lump in the breast area (Angahar, 2017).
In 2022, 2.3 million women in the world were
affected with breast cancer, and 670,000 women
died from breast cancer, based on data from WHO.
Data from The Global Cancer Observatory shows
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that in Indonesia, breast cancer ranks first as the
cancer with the most cases, reaching 66,271 cases
with more than 22 thousand cases of death.
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One of the protein biomarkers of
breast cancer is estrogen receptor alpha (ER-
a). Overexpression of ER-o causes abnormal
proliferation of breast lobular and ductal epithelium
that becomes malignant and forms tumors (Clusan,
et al., 2023). Therefore, breast cancer therapy
can be treated using an ER-o antagonist, such
as tamoxifen. Besides acting as an antagonist,
tamoxifen can act as an estrogen receptor agonist
that can trigger proliferation in the endometrium.
This may increase the risk of endometrial cancer
after long-term therapy (>2 years), especially
in postmenopausal
uterine abnormalities (Hermansyah, et al., 2024;
Emons, et al., 2020). Furthermore, tamoxifen can
cause dangerous side effects such as bleeding and
endometrial cancer risk. Hence, alternative ER-o
antagonists from other resources must be developed
(Fauzi, et al., 2024; Dermawan, ef al., 2019). Many
studies are looking for ER-a candidates from natural

women with pre-existing

LA 11]ICIC

products. Natural products are considered more
effective with minimum side effects and are readily
metabolized and absorbed in the body (Wangchuk,
2018). Some plants have anticancer activity but
need further research for compounds such as cat's
whisker (Orthosiphon aristatus).

Empirically, O. aristatus can be used as a
traditional medicine to treat rheumatism, cough,
gout, colds, kidney stones, diabetes, and as a diuretic
(Rafi, et al., 2021). The chemical compounds
contained in O. aristatus include flavonoids
(eupatorin and sinensetin), polyphenols (rosmarinic
acid), and others (Septyani & Sinta, 2021). Some
of the active compounds contained in O. aristatus
provide anticancer activity, as listed in Table 1. To
obtain new candidate compounds in breast cancer
treatment against estrogen receptor alpha, an in
silico study with a molecular docking method was
performed using these bioactive compounds from
O. aristatus.

Table 1. Anticancer activities of active compounds found in O. aristatus.

Anticancer

Cancer Cell

Compounds Activity Line Applied To ICso References

Eupatorin Breast cancer MCF-7 and 5 pg/mL Razak, et al., 2019
MDA-MB-231 cells

Ladanein Leukemia K562 cells 10.4+£2.0 yM Alkhatib, et al., 2009
Sinensetin Breast cancer T47D cells 159.049+12.9 pug/mL  Arifianti, et al., 2020
Salvigenin Colorectal cancer  HCT-116 cells I.5and 1.8 uyM Castano, et al., 2024
Tetramethyl scutellarein  Breast cancer MCF-7 cells 0.53 uM Manthey and Guthrie, 2002
5-Hydroxy-6,7,3’,4’- Glioblastom U87MG cells 78 uM Papapetrou, et al, 2024
tetramethoxyflavone T98G cells 30.5 uM

MDA-MB-231 cells
MDA-MB-468 cells
MCF-7 cells
MCEF-7 cells

Rosmarinic Acid Breast cancer 321.75£9.75 uM
340.45+7.57 uM
26.30 pg/mL

8 and 12 pg/mL

Messeha, et al., 2020

Curcumin Breast cancer
7,34 -Tri-O-

methylluteolin

Halimatushadyah, et al., 2023

Breast cancer Sudh,a et al., 2018

METHODS test compounds were copied from the PubChem
database (https://pubchem.ncbi.nlm.nih.gov/).

Lipinski Rule of Five Prediction Physicochemical properties, including molecular

Lipinski Rules of Five prediction was
performed to analyze the drug-likeness of the
test compound and determine its ability as an
oral preparation. The canonical smiles of the
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weight, permeability, and number of hydrogen
donors and acceptors, were analyzed using a free
online website, Mcule Property Calculator (https://
mcule.com/apps/property-calculator/).
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ADMET Prediction

ADMET prediction was carried out to
predict the pharmacokinetic profile (absorption,
distribution, metabolism, excretion) and toxicity of
the test compound. Human Intestinal Absorption
(HIA %), CaCo-2, Plasma Protein Binding (PPB
%), Blood Brain-Barrier (BBB), mutagenic
and carcinogenic potential were performed on
PreADMET page https://preadmet.webservice.
bmdrc.org/.

Pharmacophore Screening

Pharmacophore screening was done to
identify hit test compounds that have similarities
with the pharmacophore and provide activity. The
target receptor (ER-a) with PDB ID 1SJO and the
active and decoy databases were downloaded from
https://dude.docking.org/targets and prepared by
converting the file format ofnine test compounds into
.Idb. Then, pharmacophore modeling was carried out
with LigandScout 4.4.5 using the active database,
which had been categorized into clusters, to obtain
ten pharmacophore models (Fa’aizah, et al., 2024).

Next, pharmacophore validation was
carried out using 10 pharmacophore models, the
active database marked in green and the decoy
database marked in red. After that, the modeling
with the best ROC Curve was selected and used
with the test compound database to obtain the hit
compound.

Preparation of the Ligand and Receptor

The ligands we used were three-dimensional
structures of ten test compounds downloaded on
https://pubchem.ncbi.nlm.nih.gov/ and optimized
through the MM2 function using Chem3D Pro 12.
All test compounds were protonated by adding
hydrogen atoms. Then, a Gasteiger charge was added
using AutoDockTools-1.5.6 and saved in pdbqt
format. We also use 4-hydroxytamoxifen, an active
metabolite from tamoxifen, as a comparative drug.

The receptor used was ER-o (PDB ID:
1SJ0), downloaded from the Protein Data Bank
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(https://www.rcsb.org/structure/1SJ0)  in  .pdb
format. This receptor was chosen since this PDB ID
was also selected for the pharmacophore screening,
ensuring consistency between the docking and
screening processes. Using the same PDB ID
(1SJ0) allowed us to maintain structural alignment
and relevance in evaluating ligand interactions.
Furthermore, it was the only available structure
in the DUD.E database suitable for studying ER-a
inhibitors, making it a reliable and practical choice
for our further analysis.

Later, the water molecules on the protein
were removed, and the natural ligand was separated
from the receptor using the BIOVIA Discovery
Studio 2020. Then, using AutoDock 4.2.6, ER-a
was protonated by adding hydrogen atoms (polar
only) and given a Kollman charge. The results of the
receptor preparation were saved in pdbqt format.

Docking Validation

Molecular docking was validated through
a redocking procedure of the native ligand to the
receptor using the Lamarckian genetic algorithm
with 100 runs in AutoDock. The parameter observed
from this process is the root mean square deviation
(RMSD) value. The RMSD value of the ligand
position after the redocking procedure should be
lower than 2.0 A.

Molecular Docking

Molecular docking simulations of test
compounds as ligands and ER-o as macromolecules
were performed in AutoDock using the Lamarckian
Genetic Algorithm with 100 runs. The coordinates
used are the best grid coordinates obtained from the
previous validation, which were Grid Box Size (x =
30.885; y =-1.067; Z = 23.464 A), Grid Coordinate
(x=40; y=40; z=40 A) with a distance 0f 0.375 A.
The parameters observed were binding energy and
inhibition constant. Then, visualization was carried
out using the BIOVIA Discovery Studio to identify
the bond between the ligand and the receptor and
the amino acids involved in the interaction.
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RESULTS

Lipinski Rule of Five Prediction

First, the physicochemical properties of

all bioactive compounds listed in Table 1 were
evaluated using Lipinski's rule of five. A compound
is considered to comply with the Lipinski rule if it
meets at least three out of four criteria: molecular

SR 11]ICIC

weight <500 Da, log octanol/water partition
coefficient (Log P) <5, hydrogen bond donors <5,
and hydrogen bond acceptors <10 (Lipinski, 2004).
The analysis revealed that all tested compounds
satisfied all Lipinski criteria (Table 2), indicating
their potential for further development as candidates
for oral administration.

Table 2. Lipinski's rule of five screening results for bioactive compounds in O. aristatus.

Molecular

Hydrogen Bonds

Compounds Weight L(:?;)P Donor  Acceptor Result
(<500 Da) (<5) (<10)

Eupatorin 34431 2.90 2 7 Meet the criteria
Ladanein 314.29 2.89 2 6 Meet the criteria
Sinensetin 372.37 3.50 0 7 Meet the criteria
Salvigenin 328.32 3.19 I 6 Meet the criteria
Tetramethyl Scutellarein 342.34 3.49 0 6 Meet the criteria
>-Hydroxy-6,7,3'4" 358.34 3.20 | 7 Meet the criteria
tetramethoxyflavone

Rosmarinic Acid 360.31 1.76 5 8 Meet the criteria
Curcumin 368.38 3.37 2 6 Meet the criteria
7,34 -Tri-O- 328.32 3.19 | 6 Meet the criteria

methylluteolin

ADMET Prediction

The pharmacokinetic predictive analysis of
bioactive compounds in O. aristatus revealed that
all compounds, except rosmarinic acid (moderate
absorption), satisfied the criteria for human
intestinal absorption (%HIA). Sinensetin exhibited
the highest %HIA at 98.89. The compounds'
permeability in the gut was evaluated using CaCo-2
values, which serve as an in vitro model of human
colon carcinoma. A compound is considered to
have good permeability with a CaCo-2 value
>70 nm/sec, while values between 4 and 70 nm/
sec indicate moderate permeability (Ghannay, et
al., 2020; Abdurrahman, et al., 2021). All tested
compounds demonstrated moderate permeability,
with tetramethyl scutellarein showing the highest
CaCo-2 score of 53.769.

The parameters used to assess distribution
included plasma protein binding (%PPB) and
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blood-brain barrier (BBB) permeability. The %PPB
describes how well a compound binds to plasma
proteins for distribution in the bloodstream. For
optimal distribution and pharmacological effects,
compounds should not bind too strongly to plasma
proteins, as this can lead to safety concerns and side
effects (Suherman and Maulidya, 2023). All test
compounds had %PPB values below 90%, indicating
weak binding to plasma proteins. Regarding BBB
permeability, compounds were categorized as well
absorbed (BBB >2), moderately well absorbed
(BBB 0.1-2), or poorly absorbed (BBB <0.1) (Deli,
2011). Rosmarinic acid was the only compound
moderately well absorbed at the BBB, while the
remaining compounds were poorly absorbed.
Toxicity profiling assessed the mutagenicity
and carcinogenicity of the test compounds.
Mutagenicity was predicted using the Ames test,
which evaluates the growth of several strains of
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Salmonella typhimurium requiring histidine for
survival (Hengstler, 2001). All test compounds,
except curcumin, were predicted to be mutagenic.
Based on ADME-Tox predictions, ladanein was
identified as carcinogenic in mice, while all
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compounds were predicted to be carcinogenic in
rats (Table 3). Therefore, the bioactive compounds
in O. aristatus exhibited favorable pharmacokinetic
profiles, but further in vivo validation is necessary
to address those pharmacokinetic profiles.

Table 3. ADME and toxicity prediction results for bioactive compounds in O. aristatus.

Absorption Distribution Toxicity
Compounds o CaCo-2 o Carcinogen
P HIA() (200 PPB(%)  BBB Mutagen = TOE=R

Eupatorin 93.49 7.14 85.46 0.03 Mutagen - +
Ladanein 93.37 9.77 87.68 0.08 Mutagen + +
Sinensetin 98.89 51.22 86.24 0.02 Mutagen - +
Salvigenin 96.49 33.06 8741 0.02 Mutagen - +
Tetramethyl Scutellarein 98.44 53.77 88.12 0.06 Mutagen - +
>-Hydroxy-6,7,3'4- 96.81 30.48 85.83 00l Mutagen - +
tetramethoxyflavone

Rosmarinic Acid 62.49 20.25 86.24 0.10 Mutagen - +
Curcumin 94.40 20.07 88.03 0.09 Non- mutagen - +
7,3, 4’-Tri-O-methyl luteolin 96.49 31.47 87.12 0.02 Mutagen - +

Pharmacophore Screening

Among the ten pharmacophore models
generated, models 1 and 2 demonstrated the best
performance, yielding 184 hit compounds and
the highest AUC value of 96% compared to the
other models. Out of the nine test compounds,
five were identified with functional groups that

closely matched the interaction patterns of the
target receptor (Table 4). The highest fit score was
observed for ladanein (46.02), while the lowest was
recorded for rosmarinic acid (44.31). These findings
suggest that the chemical properties of these ligands
align well with the features of the native ligand
structure-based pharmacophore model.

Table 4. Pharmacophore screening results for bioactive compounds in O. aristatus.

Compounds

Pharmacophore Fit Score

Ladenin
Eupatorin
Salvigenin

5-Hydroxy-6,7,3’,4’-tetramethoxyflavone

Rosmarinic Acid

46.02
44.55
44.52
44.37
44.31

Molecular Docking

The molecular docking validation results
showed an RMSD value of 0.84°A, indicating
the method is valid. All test compounds exhibited
negative binding energy values in the molecular
docking study involving the bioactive constituents
in O. aristatus, suggesting spontaneous activity to
interact against ER-a. However, the binding energy
values of the test compounds were all higher than
the bond energy value of 4-hydroxytamoxifen,
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which was -11.31 kcal/mol. Furthermore, none
of the test compounds had an inhibition constant
value lower than 5.12 nM. Among the nine test
compounds, 7,3',4'-Tri-O-methylluteolin had the
lowest inhibition constant at 0.38282 pM, followed
by rosmarinic acid at 1.31 pM (Table 5). The
compound that interacts with amino acids similar
to the 4-hydroxytamoxifen was rosmarinic acid,
which has hydrogen bonds GLY521 and HIS524
(Figure 1).
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Table 5. Molecular docking results of bioactive compounds in O. aristatus toward ER-a

Binding Inhibition Interaction with Amino Acid
Compounds Energy Constant Hydrogen Van Der Others
(kcal/mol) (uM) Bonds Waals Bonds
4-Hydroxytamoxifen -11.31 0.00512 GLY A: 521 - LEU A: 346; LEU A: 384: MET A:
(Comeparative Drug) HIS A: 524 388; LEU A = 349; ALA A:350;
LEU A =525
Eupatorin -6.9 8.69 CYS A: 530 MET A: 421 ASP A: 351; ALA A: 350; LEU A:
GLY A: 521 525; LEU A: 346; LEU A: 428; ILE
THR A: 347 A: 424; PHE A: 425; PHE A: 404;
MET A: 343; HIS A: 524
Ladanein -8.74 39116 A SP A: 351 ALA A: 350; THR A: 347; LEU A:
CYS A: 530 384; LEU A: 354; MET A: 388; TRP
A: 383
Sinensetin -7.51 3. - MET A: 343; MET A: 421; MET A:
388; LEU A: 391; PHE A: 404; LEU
A: 428; PHE A: 425; ILE A: 424;
HIS A: 524; TRP A: 383; LEU A:
525; CYS A: 530; ALA A: 350
Salvigenin -7.57 2.84 MET A: 421 ASP A: 351; TRP A: 383; PHE A:
GLY A: 521 425; PHE A: 404; ILE A: 424; LEU
TRP A: 383 A: 428; LEU A: 346; LEU A: 525;
HIS A: 524; MET A: 343; ALA A:
350
CYS A: 530; THR A: 347
Tetramethyl Scutellarein 7.19 5.36 - ASP A: 351; THR A: 347; CYS A:
530; MET A: 343; TRP A: 383;
ALA A: 350; LEU A: 346; LEU A:
350; LEU A: 387; LEU A: 391; LEU
A: 525; MET A: 388; MET A: 421;
PHE A: 404
5-Hydroxy-6,7,3',4"- -7.64 25 CYS A: 530 PHE A: 425 LEU A: 346; ALA A: 350; LEU A:
tetramethoxyflavone LEU A: 525 354; LEU A: 387; TRP A: 383; ASP
THR A: 347 A: 351
MET A: 343
PHE A: 404
LEU A: 349
LEU A: 536
Rosmarinic Acid -8.02 1.31 ASP A: 351 THR A: 347; CYS A: 530; ALA A:
HIS A: 524 350; ILE A: 424; LEU A: 525
GLY A: 521
Curcumin -8.56 5 3329 GLU A: 353 - LEU A: 387; TRP A: 383; ALA A :
350; LEU A: 346; PHE A: 404
7,3’ 4-Tri-O-methyl luteolin -8.75 0.38 ARG A: 394 HIS A: 524; ILE A: 424; LEU A:
LEU A: 387 346; LEU A: 349; LEU A: 391; LEU

A: 525; MET A: 421; PHE A: 404
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Figure 1. The 2-dimentional docking visualization from molecular docking between bioactive compounds

in Orthosiphon aristatus toward ER-a.
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DISCUSSION
The current study aims to evaluate
whether the bioactive constituents of O.

aristatus could potentially target ER-a, which
is overexpressed in breast and ovarian cancers.
Initially, the physicochemical properties of nine
compounds were assessed based on Lipinski's
Rule of Five (ROS5), a guideline used to predict
a compound's solubility and permeability across
biological membranes and its suitability for oral
administration. The analysis revealed that all tested
compounds satisfied the ROS5 criteria, suggesting
their potential as oral drug candidates. However, it
is important to note that Lipinski's rule of five is not
the sole parameter for determining a compound's
suitability for new drug development. Many drugs
do not adhere to the Lipinski rule of five yet still
exhibit pharmacological activity (Roskoski, 2023).
Additionally, natural products are often considered
exceptions to Lipinski's rules. Despite having higher
molecular weights and numerous rotatable bonds,
these compounds maintain low hydrophobicity and
strong intermolecular hydrogen-bonding potential
due to natural adaptations. Nevertheless, natural
product leads within the Lipinski framework have
achieved a comparable success rate (50%) in oral
drug development (Ganesan, 2008). Furthermore,
the pharmacokinetic analysis highlights the
potential of O. aristatus bioactive compounds as
oral drug candidates. The favorable absorption and
distribution profiles provide a strong foundation
for further development, particularly on targeted
therapies. However, the toxicity concerns necessitate
comprehensive validation in animal models and
potential structural optimization to mitigate risks.
Several strategies could also be applied to minimize
risks, such as structural modifications to enhance
the pharmacokinetic profile and reduce toxicity.
Virtual screening was conducted to identify
test compounds with potential activity against
the target protein, ER-o. Ligand-based virtual
screening was performed using pharmacophore
modeling to identify compounds with structural
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similarities, which are believed to exhibit similar
activity. The pharmacophore model was validated
using a database of active and decoy compounds
to assess its accuracy in distinguishing between
the two. Effective pharmacophore modeling is
characterized by the ability to identify a high
number of active compounds while minimizing
decoys. Validation results, including total compound
hits and ROC curves with AUC and EF values,
are used to evaluate the model's performance. A
pharmacophore model is considered valid if the
AUC value exceeds 0.50 (Widyasari, et al., 2022).
Following the pharmacophore screening, five of
the nine tested compounds were identified as active
against ER-a, as indicated by their pharmacophore
fit scores. The pharmacophore fit score reflects
how well geometric features in a compound align
with the features of the pharmacophore model. A
higher fit score indicates a greater likelihood that
the compound matches the pharmacophore model
and exhibits higher activity as an ER-a inhibitor
(Muchtaridi, et al., 2017; Hariyanti, et al., 2021).

Subsequently,  structure-based  virtual
screening through molecular docking was
conducted to predict a complex structure interaction
with a molecule, predict the binding of ligands that
have activity, find new ligands, and indicate the
binding affinity of compounds (Ekawasti, et al.,
2021). From the redocking process of the native
ligand, an RMSD value of 0.84 A was obtained.
The RMSD value of <2A illustrates that the error
in redocking is small, so it is concluded that the
process is accurate and can be used as a reference
in molecular docking simulation of test compounds
(Amrullah, et al., 2023).

The molecular docking process utilized
4-hydroxytamoxifen as a reference drug, the active
metabolite of the tamoxifen prodrug, which is
metabolized in the liver (Effendi, ef al., 2023). The
parameters evaluated during the docking process
included binding energy and inhibition constant
values. Binding energy represents the energy
required for the receptor to interact with the ligand
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(Yunta, 2016), while the inhibition constant reflects
the ligand's ability to inhibit receptor activity.
A lower inhibition constant indicates a stronger
ligand-receptor bond and higher inhibitory potential
(Puspita, et al., 2022). During the ligand-receptor
interaction, energy is released into the environment.
If the binding energy is negligible or negative, the
resulting bond affinity is considered more stable
and potent (Saad, 2016). However, none of the
test compounds demonstrated binding energies
or inhibition constant values lower than those of
the comparator drug, 4-hydroxytamoxifen, which
recorded values of -11.41 kcal/mol and 0.0051
UM, respectively. These findings suggest that the
test compounds exhibit weaker binding affinities to
ER-0 compared to 4-hydroxytamoxifen.

The molecular docking results were
visualized in 2D to compare the amino acid residues
and the number of hydrogen bonds formed during
interactions between each test compound and the
reference drug. A ligand-test compound bond is
considered more stable when more hydrogen bonds
and amino acid residues are involved (Muflihunna
and Sukmawati, 2023). For the reference compound,
4-hydroxytamoxifen, eight amino acid residues
were identified in the interaction, including two
hydrogen bonds. Among the test compounds, only
rosmarinic acid demonstrated similar hydrogen bond
interactions with 4-hydroxytamoxifen, specifically
with the amino acid residues HIS524 and GLY521.
Previous studies have reported that estradiol also
binds to ER-a through hydrogen bonding with
HIS524 and GLY521, while these residues interact
with 4-hydroxytamoxifen through van der Waals
interactions (Ervina, et al., 2021; Rocha-Roa, et
al., 2023). Similarly, an in silico study by Ummah
and Zummah (2024) showed that chlorogenic acid,
a compound structurally related to rosmarinic acid,
formed hydrogen bonds with HIS524 and GLY 521
in ER-a. These findings highlight the significance
of HIS524 and GLY521 as essential residues for
receptor activity and ligand interaction.
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The potential breast anticancer activity of
rosmarinic acid is further supported by its reported
ability to induce mitotic arrest and apoptosis in
MDA-MB-468 breast cancer cells (Messeha, et
al., 2020). This highlights rosmarinic acid in O.
aristatus as a promising candidate for breast cancer
treatment. While this study primarily utilized
computational approaches, future research should
explore other bioactive compounds in O. aristatus
that may also possess anticancer properties.
Furthermore, the biological activities of rosmarinic
acid as a breast anticancer agent should be validated
through experimental studies, particularly in ER-a-
positive breast cancer, to confirm the findings of
this in-silico analysis.

CONCLUSION

In summary, the bioactive constituents
of O. aristatus satisfied all criteria of Lipinski's
rule and demonstrated good to moderate
results in pharmacokinetic prediction analysis.
Pharmacophore ~ modeling  identified  five
compounds as hit compounds against ER-a.
Among them, rosmarinic acid exhibited hydrogen
bonding interactions similar to 4-hydroxytamoxifen
at HIS524 and GLY521, with a binding energy of
-8.02 kcal/mol. These findings suggest that O.
aristatus and rosmarinic acid hold potential as
an anticancer agent targeting ER-o and warrants
further investigation.
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