ISSN: 2088-0197 e-ISSN: 2355-8989

Antioxidant Activity of Garcinia cf bancana Miq

Sri Hartati¹, Triyem² and Herry Cahyana²

Research Center for Chemistry, Indonesia Institute of Sciences, Kawasan Puspiptek Serpong Tangerang. Department of Chemistry, Indonesia University. UI- Depok

Abstract

Guttiferron F and essential oil were isolated from extract n-hexane of Garcinia of bancana Miq. Antioxidant activity was done by DPPH method to n-hexane, methanol, ethyl acetate, n-butanol extracts and Guttiferron F, showed activity with IC50 24.5, 22.4, 29.2, 37.6 and 25.8 μ g/mL respectively. The structure elucidation of Guttiferon F based on spectroscopy data of IR, NMR of ¹H and ¹³C.

Keywords: Antioxidant, Garcinia of bancana Miq., Essential oil and Guttiferon-F.

INTRODUCTION

Garcinia Cf bancana Miq similarity with G. bacana Miq belonging to the Guttiferae family is distributed throughout Southern Thailand, Malaysia and Indonesia (Withmore, 1973). Some of Garcinia species used as traditional medicines as G. picroriza aand G. atroviridis used for fever (Burkill, 1935), G. mangostana used as antidhiarea and anti inflammatory (Ballasubranian et al., 1988), G. dulcis used as lymphatitis, struma and parolitis (Inuma et al, 1996). Some compounds of Garcinia species have potentially bioactivity as antioxidant (Yamaguchi et al., 2000; Terashima et al., 2002; Anne et al. 2004 and Liao et al., 2005), antibacterial and antifungal (Permana et al., 2001; Vancharin et al., 2005a, 2005b; Suksamrarn et al., 2003; Sudpodma et al., 2005 and Quan-Bin et al., 2005), cytotoxic (Odile et al., 2000; Xu et al., 2000; Chi-Kuan et al., 2002; Quan-Bin et al., 2006; Suksamrarn et al., 2006), antimalarial (Likhitwitiawuid et al., 1998a, 1998 b; Tona et al., 2004) and HIV-I inhibitory activities (Chen et al., 1996). In search to investigation antioxidant from natural product, have been done antioxidant activity assay with radical scavenger (DPPH) method of *n*-hexane, methanol, ethyl acetate and *n*butanol extracts and isolation of main active compound of bark G. cf bancana Miq.

METHODS

Plant material

The barks of *Garcinia cf bancana* was collected from village Kalapangan, district Sebangau Palangkaraya Central Kalimatan. Species determine was conducted by Ismail and voucher specimens deposited at the Herbarium Bogorience of Research Center for Biology–LIPI. Bogor.

General methods

Melting point was measured on Fisher Scientific Apparatus. IR spectra was obtained with a Shimadzu Perkin Elmer 16 PC-FT-IR Prestige 21 Spectrometer. 1D and 2 D NMR were performed on I NOVA Plus, Unity NMR 500 MHz spectrometer with tetra-methyl-sylane (TMS) as LC-MS standard. Mariner spectrometry, LC: Hitachi L 6200, System FSI (Electrospray Ionization), Positive ion mode, column C-18 Supelco, column length: 150 mm, ID: 2 mm, particle size: 5 um. GC-MS Shimadzu OP 5050A, detector DDSMS, temperature column 60°C; temperature detector 300°C, temperature injector 310°C, time analyze 30 min., volume injection 0.2 uL. Silica gel (65-250 mesh and 230 - 400 mesh) from E-Merck, Sephadex LH-20 from Amersham Bioscience. DPPH 1,1-diphenyl-2pycrylhidrayl was purchased from Sigma Chemical Co.

^{*}Corresponding author e-mail: hartatis2003@yahoo.com

Extraction and Isolation

The ground dried stem barks of G. cf bancana Mig (4.58 Kg) was percolated with nhexane (3x5 L) at room temperature, the solvent was evaporated in vacuum to afford a hexane extract (190 g). The residue continued to percolated with methanol (4x5 L) at room temperature, the solvent (MeOH) was evaporated in vacuum to afford MeOH extract (420 g). The MeOH extract (100 g) then suspended in H₂O (1 L) and portioned with ethyl acetate (3x1 L) the separated fraction ethyl acetate from H₂O and evaporated in vacuum to afford ethyl acetate extract (10 g). To the water fraction added nbutanol (3x1 L) to portioned and the separated fraction n- butanol from H₂O and evaporated in vacuum to afford n- butanol extract (40 g). The nhexane extract (37 g) was subjected to silica gel flash column chromatography (CC: Φ 5 cm; < 45 um; 50 g) using gradient mixture of n-hexaneethyl acetate (0-100 %) as mobile phases, affording four fractions (FA-FD). FA fraction is colorless essential mixture oil (1.64 g) was analyzed by GC-MS. FD fraction was subjected to sephadex LH-20 column using mixture of CH₂Cl₂: MeOH (1:1) as mobile phase, resulting fractions $(FD_1 - FD_3)$, the second fraction (200 mg) was further purified by preparative thin layer

chromatography (TLC) yielded compound **5** (10.2 mg).

Each extracts and compound **5** was tested for antioxidant properties base on scavenging activity study using stable 1,1- diphenyl-2-pycrylhidrazyl (DPPH) free radical.

Scavenging Activity of DPPH radicals

The free radical-scavenging activity (Molyneux, 2004) method was tested as bleaching of stable 1,1- diphenyl-2-pycrylhidrazyl radical. In its radical from DPPH^o has an absorption band at 520 nm (dark purple), which disappear upon reduction by antiradical compound. The principle reaction as bellow: (**Figure. 1**).

The reaction mixture containing test sample 25, 125, 250 and 500 μ L respectively (1000 ppm in MeOH) and 500 μ L of DPPH (0.5 mM in the MeOH) are added to each samples and dilute in MeOH until 2.5 mL and incubated at 37°C for 30 min. The absorbance was measured at 515 nm. Percent radical scavenging activity was measured by comparison with MeOH containing control. IC₅₀ values represent of compound (samples) to scavenge 50% of DPPH radical. Cuercetine was used as positive control.

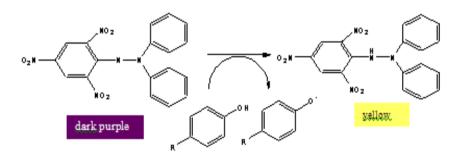
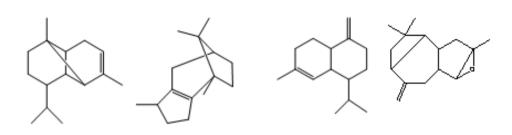


Figure 1. The principle reaction of DDPH


RESULTS

From the analysis of FA (essential oil) with GC-MS resulted mixture of compounds:

- a. Copaene 1 with retention time 10.42 min, with Mr = 204, molecule formula C_{15} H_{24} and with percent SI (similarity) is 96%.
- b. 4,7-methanoazulene **2** have retention time 10.88 min, with Mr = 204, molecule formula $C_{15}H_{24}$ and percent SI is 91%.
- c. γ -cadienene **3** with retention time 12.58 min with Mr = 204 and molecule formula C_{15} H_{24} have percent SI is 95%.
- d. Cariofilen oxide **4** have retention time 13.99 min with Mr = 220 and molecule formula $C_{15}H_{24}O$, with percent SI is 97%. The structures **1**, **2**, **3** and **4** are (Figure. **2**):

Copaene

y- cadienene

Figure 2. Four essentials structure 1: 2; 3 and 4

4,7-methanoazulene

Compound 5: was isolated as yellow powder (10.2 mg), melting point 133 - 135 °C, having the MH^+ at the m/z = 603. Melting point 133-135°C. The IR (in KBr) spectrum showed strong bands (3406-3257 cm⁻¹) and sharp bands at 1726 cm⁻¹, 1638 cm⁻¹, 1600 cm⁻¹. The ¹H-NMR data (in C_3D_6O , 500 MHz) showed chemical shift (δ^1H , ppm) 0.99 (3H, s); 1.17 (3H, s); 1.45 (3H, s); 1.49 (3H, s); 1.59 (3H, s); 1.60 (3H, s); 1.62 (3H, s); 1.63 (3H, s); 1,68 (3H, s); 1.69 (3H, s); 1.93 (2H, dd, J=12.85; 6.1 Hz); 2.01 (m); 2.02 (m); 2.20 (d, J = 14.50 Hz; 2.69 (m); 2.70 (m); 4.50 (s); 4,51 (s); 4.93 (1H, t); 5.02 (1H, t); 5.09 (1H, b); 6.71 (1H, d, J=7.30 Hz); 7.03 (1H, d, J=7.35 Hz); 7.20 (s, 1H). The ${}^{13}\text{C-NMR}$ (125 MHz, in $\text{C}_3\text{D}_6\text{O}$ and DEPT) data showed chemical shift (δ^{13} C, ppm) 17.90 (CH₃); 18.12 (CH₃); 18.18 (CH₃); 18.38

(CH₃); 23.04 (CH₃); 25.74 (CH₃); 25.82 (CH₃); 26.16 (CH₃); 26.59 (CH₂); 27.21 (CH₂) ; 27.33 (CH₃); 32.75 (CH); 37.13 (CH₂); 42.92 (CH₂); 44.40 (CH); 48.88 (C); 47.60 (C); 49.50 (C); 69.00 (C); 112.05 (CH₂); 114.69 (CH); 116.91 (CH); 116.91 (C); 122.07 (CH); 124.03 (CH); 125.09 (CH); 125.89 (CH); 131.38 (C); 131.46(C); 132.29 (C); 132.29 (C); 145.11 (C-OH); 149.40 (C-OH) ; 150.31 (C); 171.50 (C-OH); 196.50 (C=O); 211.00 (C=O). HMQC (Heteronuclear Multiple Quantum Coherence) and HMBC (Heteronuclear Multiple Bond Corelation) data of compound **5** showed in Table **2**.

4. Cariofilen oxide

The Scavenging Activity of DPPH radicals result showed in **Table 1**

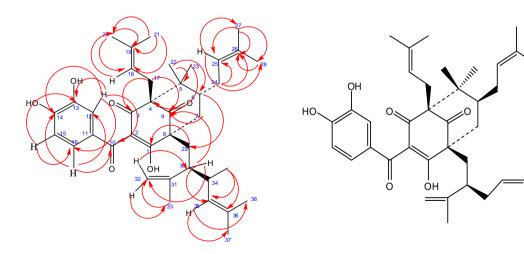


Figure 3. Correlation HMBC of compund 5

Figure 4. Guttiferon F

Table 1. The IC₅₀ antioxidant of extracts and compound 5

Sample	IC ₅₀ μg/mL		
Cuercetine	10.09		
n-hexana exstract	24,50		
Methanol exstract	22,35		
Ethyl acetate exstract	29,17		
n-butanol exstract	37.56		
Compound 5 (Guttiferon F)	25.79		

DISCUSSION

Essential oil

From the analysis with GC-MS of FA (essential oil) resulted a mixture of compounds Copaene Mr = 204, molecule formula ($C_{15}H_{24}$) with percent SI (similarity) is 96%. **1**; 4,7-methanoazulene, with Mr = 204, molecule formula $C_{15}H_{24}$ and percent SI is 91%. **2**, γ - cadienene with Mr = 204 and molecule formula C_{15} H₂₄, have percent SI is 95%. **3** and Cariofilen oxide with Mr = 220 and molecule formula $C_{15}H_{24}O$, with percent SI is 97%**4**. There compounds are sequterpen (C_{15}), spesifik build from a head to tail isopren folowed "the isopren rule".

Campound 5

Was isolated from n-hexane fraction (FD₂) as yellow powder (10.2 mg), gave a molecular ion at $[MH^+] = 603/M = 602$, molecule formula C₃₈H₄₉O₆. The IR spectrum characteristic showed strong bands for hydroxyl (3537 - 3257 cm⁻¹) and both non conjugated (1725 cm⁻¹) and conjugated (1637 cm⁻¹ and 1600 cm⁻¹) carbonyl groups. Melting point 133-135°C. Analysis of the 1D and 2 D NMR spectra in C₃D₆O with homo and hetero nuclear direct and long-range correlations allowed assignment of ¹H and ¹³C NMR signals for compound 5 as listed in Table. 2, revealed signals assignable six vinylic methyl groups at $(\delta 1.49)$; 1.60; 1. 62; 1. 63; 1.68 and 1.69 ppm, 3 H each singlet) and three vinyl proton at (δ 4.51; 4.93; 5.02 ppm, 1H each triplet) indicated contain of three isophrenyl groups. Two saturated methyls group appeared at δ (0.99 and 1.17 ppm, 3H each s) and were assigned methyl geminal group. (C-22 - C-23) correlated by HMBC two each other and to C-4; C-5 and C-6. It also showed two

exomethylen protons at (δ 4. 50 and 4.53 ppm each s) and one terminal methyl proton. An AMX system was evident from proton resonance at, 6.71 (1H, d, J=7.30 Hz); 7.03 (1H, d, J=7.35 Hz); 7.20 (s, 1H) and typical ¹³C NMR signals three substituted aromatic carbons at δc 149.5; 145. 1; 131.5 and conjugated carbonyl at δc 196.5, were indicated at 3,4 - deoxygenated benzovl moietv. Resonance for six membered ring consisting non conjugated ketone at δc 211.0. It shows the presence of three methine carbons of three substituted olefenic groups (-CH=Me x 3) doublet at 125.9; 131.8 and 132.3 and triplet at 112.1 for terminal methylene carbon $[C(Me)=\underline{C}H_2)$. The other assignment are at 132.9; 131.4 and 132.3 ppm (C-19; C-26 and C-36; =CMe₂), 147.2 (C-36; =<u>C</u>=CH₂). The compound **5** confirmed with literature (Fuller R.W. et al, 1999; Gustafson et al, 1992) and can be concluded that compound 5 is Guttiferon F. (The correlation HMBC of copound 5 list at **Table 2**. and Guttiferon F in **Fig. 2**).

Antioxidant acivity

The *n*-hexane, methanol, ethyl acetate, *n*-butanol extracts and Guttiferron F (compound **5**) were screened for DPPH Radical scavenging activity, *n*-hexane, methanol, ethyl acetate, extracts and Guttiferron F (compound **5**) are showed significant activity (IC₅₀ 24.5, 22.4, 29.2, and 25.8 μ g/mL respectively) compare to the standard cuercetin (IC₅₀ 10.09 μ g/mL) and *n*-butanol extract showed moderate activity (IC₅₀ 37,56 μ g/mL).

Table II. Chemical ship ¹H, ¹³C NMR, HMQC and HMBC Data of Compound 5.

No.	¹³ C- NMR (δ, ppm)	HMQC ¹H (δ, ppm)	groups	HMBC ¹³ C-NMR (δ, ppm)		
I	171.50	-	C-OH	-	-	-
2	116.91	-	С	-	-	-
3	211.00	-	C=O	-	-	-
4	69.00	-	С	-	-	-
5	49.50	-	С	-	-	-
6	47.60	1.45	CH	C8 (48.88)	-	-
7	42.92	2.2 (d, J=14.50 Hz)	CH₂	C9 (211.00)	-	
8	48.88	-	С	-	-	-
9	211.00	-	C=O	-	-	-
10	196.50	-	C=O	-	-	-
П	131.46	-	С	-	-	-
12	116.91	7.2 (s, 1H)	C-H	C13(145.11)	C14(149.50)	C16(125.09)
13	145.11	-	C-OH	-	-	-
14	149.40		C-OH	-	-	-
15	114.69	6.71 (d, 1H $J = 7.30 \text{ Hz}$)	CH	C13 (145.11)		
16	125.09	7.03 (d, 1H $J = 7.35$ Hz)	CH	C10 (196.5)	CII(II6.9I)	C15(114.69)
17	26.59	2.7 (m)	CH ₂	C3 (211.00)	C9 (211.00)	
18	125.89	4.93 (t, 1H)	CH	C20 (25.74)	C21(17.9)	
19	132.29	-	С	-	-	-
20	25.74	1.62 (s, 3H)	CH₃	C18 (125.89)	C19 (132.29)	C21 (25.74)
21	17.90	1.49 (s, 3H)	CH₃	C18 (125.89)	C19 (132.29)	C20 (25.74)
22	23.04	1.17	CH₃	C5 (49.50)	C6 (47.60)	
23	27.33	0.99 (s, 3H)	CH₃	C4 (69.00)	C6 (47.60)	
24	27.21	2.01 (m)	CH ₂	C25 (124.03)	C26 (131.38)	-
25	124.03	5.02 (t, 1H)	CH	C26 (131.38)	C27 (25.82)	
26	131.38	-	С	-	-	-
27	25.82	1.63 (s, 3H)	CH₃	C21 (17.9)	C25 (124.03)	C28 (18.18)
28	18.18	1.60 (s, 3H)	CH₃	C25 (124.03)	C26 (131.38)	C27 (25.82)
29	37.13	1.93 (d d, J= 12.85; 6.1)	CH ₂	CI (171.50)		
30	44.40	2.69 (m, 1.55 H)	CH	C32 (112.05)	C35 (122.07)	C9 (211.00)
31	150.31	-	С	-	-	-
32	112.05	4.51 (s, 1H); 4.53(s,1H)	CH ₂	C30 (44.40)	C33 (18.38)	
33	18.38	1.59 (s)	CH₃	C32 (112.05)		
34	32.75	2.02 (m)	CH ₂	C35 (122.07)	C36 (132.29)	
35	122.07	5.09 (b, 1H)	CH	C37 (18.12)	C38 (17.9)	
36	132.29	-	С	-	-	-
37	26.16	1.69 (s, 3H)	CH₃	C35 (122.07)		
38	18.12	1.68 (s, 3H)	CH₃	C35 (122.07)	_	_

CONCLUSION

From the analysis with GC-MS of FA (essential oil) resulted a mixture of compounds Copaene ($C_{15}H_{24}$) 1, 4,7-methanoazulene ($C_{15}H_{24}$) 2, γ - cadienene ($C_{15}H_{24}$) 3 and Cariofilen oxide ($C_{15}H_{24}$ O) 4. There compounds are sequterpen (C_{15}).

Compound 5. as yellow powder (10.2 mg), gave a molecular ion at $[MH^+] = 603 / M = 602$, melting point 133-135°C, molecule formula $C_{38}H_{49}O_6$. is Guttiferon F.

Antioxidant acivity of n-hexane, methanol, ethyl acetate, n-butanol extracts and Guttiferron F (compound 5) were screened for DPPH Radical scavenging activity, n-hexane, methanol, ethyl acetate, extracts and Guttiferron F (compound 5) are showed significant activity (IC₅₀ 24.5, 22.4, 29.2, and 25.8 μ g/mL respectively) compare to the standard cuercetin (IC₅₀ 10.09 μ g/mL) and n-butanol extract showed moderate activity (IC₅₀ 37,56 μ g/mL).

ACKNOWLEDGMENT

We are Thankful to Mr. Ismail Saleh Staff of Research Center for Biology –LIPI. Bogor for sampling and determine of specimen.

REFERENCES

- Anne-Emmanuelle, H., Aumon, M.C., Mallet, S., Dumontet, V., Litaudon, M., Rodeau, D. and Richome P., 2004, Antioxidant from *Garcinia veilardii*, *J Nat. Prod.*, **67**, 707-709.
- Balasubranian, K. and Rajagopalan, K., 1988, Xanthones from *Garcinia mangostana*, Structures of BR-Xanthone A and BR-Xanthone B, *Phytochemistry*, **27**(5), 1552–1554.
- Burkill, I.H., Birtwistle, W., Foxworthy, F.W., Scrivenor, J.B. and Watsan, J.G., 1935, A Dictionary of Economic Producds of the Malay Peninsula, Vol. I, Gaverments of the Straits Settlemens and Federated.
- Chi-Kuan, H., Huang, Y-L. and Chen, C-C., 2002, Gracinone E, A Xanthone Derivtive, has Potent Cytotoxic Effect Againts Hepatocellular Carcinoma Cell Lines, Planta Medica, **68**, 975 – 979.
- Chen, S-X., Wan, M. and Loh, B-N., 1996, Active Constituens Against HIV-I Protease from *Garcinia mangostana*, *Planta Med.*, **62**, 381-382.

- Fuller, R.W., John, W. Blunt, Jamie L. B., John H., Cardellina H. and Michael R. Boyd (1999), Guttiferron F, the First Prenylated Benzophenone from Allablackia stuhlmannii, J. Nat. Prod., **62**, 130 –132.
- Gustafson, K.R., John, W.B., Murray, H.G.M., Richard, W.F., Tawnya, C. McKee, John, H.C., HMcMahon, J.B., Cragg, G.M. and Michael, R.B., 1992, The Guttiferones, HIV Inhibitory Benzophenones from, *Tetrahedron*, **48**(46), 10092–10102.
- Inuma, M., Tosa, H., Ito, T., Tanaka, T. and Riswan S., 1996, Three New Benzophenone-Xanthone Dimers from the Root of *Garcinia dulcis, Chem. Pharm. Bull.*, **44**(9), 1744–1747.
- Liao, C-H., Ho, C-T. and Lin, J-K., 2005, Effects of Garcinol on Free Radical Generation and NO Production in Embryonic Rat Cortical Neuron and Astrocytes, *Biochem.* and *Biophsy. Res. Comm.*, **329**, 1306–1314.
- Likhitwitauwuid, K., Phadungcharoen, T. and Krungkrai, J., 1998, Antimalarial Xanthones from *Garcinia cowa*, *Planta Medica*, **64**, 70-72.
- Likhiawitayawuid, K., Chanmahasthien, W., Nijsiriruangrungsi and Krungkrai, J., 1998, Xanthone with Antimalarial Activity from *Garcinia dulcis*, *Planta Medica*, **64**, 281-282.
- Molyneux, P., 2004, The Use of the stable free radical diphenylpicrylhydrazyl (DPPH) for estimating antioxidant activity, Songklanakarin J. Sci. Technol., **26**(2), 211-219.
- Odile, T., Fahy, J., Dumotet, V., Chiaroni, A., Riche, C., Tri, M.V. and Sěvenet T., 2000, Cytotoxic Prenylxanthone from *Garcinia bracteata*, *J. Nat. Prod.*, **63**(4), 441 –446).
- Permana, D., Nordin, H.J. Lajis, Mukram, M. Mackeen, Abdul M. Ali, Norio Aimi, Kitajima M. and Takayama H., 2001, Isolation and Bioactive of Constituents of the Roots of *Garcinia atroviridis*, *J. Nat. Prod.*, **64**, 976-979.
- Quan-Bin, H., Lee, S-F, Qiau, C-P, He, Z-D, Jin-Zheng, Sun, H-D. and Xu, H-X., 2005, Complete NMR Assignments of The Antibacterial Biflavonoid GBI from *Garcinia kola*, *Chem. Pharm. Bull*, **53**(8), 1034-1036.
- Quan-Bin, H., Wang, Y-L., Ling Yang, Tso, T-F, Qiao, C-F, Song, J-Z, Xu, L-J, Chen, S-L, Yang, D-J. and Xu H-X., 2006, Cytotoxic Polyphrenilated Xanthone from the Resin

- of Garcinia hanburyi, Chem. Pharm. Bull, **54**(2), 265–267.
- Sudpondma, Y., Rukachaisirkul, V. and Phongpaichit, S., 2005, Antibacterial Cagec-Tetraprenylated Xanthones from fruit *Garcinia hanburyi*, *Chem. Pharm. Bull*, **53**(7), 850-852.
- Suksamrarn, S., Suwanapoch, N., Phakhodee, W., Thauhiranlert, J., Ratananukul, P., Chimnoi, N. and Suksamsarn, A., 2003, Antibacterial Activity of Prenylated Xanthones from the Fruits of Garcinia mangostana, Chem. Pharm. Bull, 51(7), 857–859.
- Suksamrarn, S., Komutiran, O., Ratananukul, P., Chimnoi, N., Lartpornmatulee, N. and Suksamrarn, A., 2006, Cytotoxic Prenylated Xanthones from the Young Fruit of Garcinia mangostana, Chem. Parm. Bull, **54**(3), 301-305.
- Terashima, K., Takaya, Y. and Niwa, M., 2002, Powerful Antioxydative Agent Based on Garcionic Acid from *Garcinia kola, Bioorg. Med. Chem.*, **10**, 1619–1625.
- Tona, L., et al., 2004, In vitro Antiplasmodial Activity of Extracts and Fraction from

- Seven Medicinal Plants Use in The Democratic Republic of Congo, J. of Ethno. Pharm. **93**, 27-32.
- Vatcharin, R., Todpetch, K., Watthanaphanit, A, Saengsanae, N. and Phongpaichit, S., 2005, An Antibacterial Biphenyl Derivative from *Garcinia bancana* Miq, *J. Nat. Prod.*, **68**, 1218–1221.
- Vatcharin, R., Pharm, W., Sudpindma, Y. and Phongpaichit, S., 2005, An Antibacterial Biphenyl Derivative from *Garcinia bancana* Mig., *Chem. Pharm. Bull.*, **53**(3), 342-343.
- Withmore, M.A., 1973, Tree forest of Malaya.

 Malaysia Forest Department, Ministry of Primary Industries, Logman. P. 206.
- Xu, Y-J., S. C.Yip, Kosela, S., Fitri, E., Hanafi, M., Goh, S.H. and Sim, K.Y., (2000), Novel Cytotoxic, Polyphrenylated Heptacyclic Xanthonoids from Indonesian *Garcinia gaudichaudii* (Guttiferae), *Org. Let.*, **2** (24), 3945-3948.
- Yamaguchi, F., Saito, M.O., Ariga, T., Yoshimura, Y. and Nakazawa, H., 2000, Free Radical Scavenging Activity and Antiulcer Activity from *Garcinia indica* Fruit Rind, *J. Agric. Food Chem.*, **48**, 2320–3225.